260
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Inhibitory Activities of Protein Hydrolysates from Spotted Babylon Snails on Tyrosinase and Melanogenesis

, , , &

References

  • Abu Ubeid, A., Zhao, L., Wang, Y., and Hantash, B. M. 2009. Short-sequence oligopeptides with inhibitory activity against mushroom and human tyrosinase. J. Invest. Dermatol. 129: 2242–2249. doi:10.1038/jid.2009.124
  • Azevedo, R. A., Ferreira, A. K., Auada, A. V. V., Pasqualoto, K. F. M., Marques-Porto, R., Maria, D. A., and Lebrun, I. 2012. Antitumor effect of cationic INKKI peptide from bovine β-casein on Melanoma B16F10. J. Cancer Ther. 3: 237–244. doi:10.4236/jct.2012.34034
  • Batubara, I., Darusman, L. K., Mitsunaga, T., Rahminiwati, M., and Djauhari, E. 2010. Potency of Indonesian medicinal plants as tyrosinase inhibitor and antioxidant agent. J. Biol. Sci. 10: 138–144. doi:10.3923/jbs.2010.138.144
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
  • Chaitanawisuti, N., and Kritsanapuntu, A. 1999. Experimental culture of hatchery-reared juvenile spotted babylon, Babylonia areolata Link 1807, (Neogastropoda: Buccinidae) in Thailand. Asian Fish. Sci. 12: 77–82.
  • Chan, Y. Y., Kim, K. H., and Cheah, S. H. 2011. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J. Ethnopharmacol. 137: 1183–1188. doi:10.1016/j.jep.2011.07.050
  • Chang, T. S. 2012. Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials. 5: 1661. doi:10.3390/ma5091661
  • Chiari, M. E., Vera, D. M. A., Palacios, S. M., and Carpinella, M. C. 2011. Tyrosinase inhibitory activity of a 6-isoprenoid-substituted flavanone isolated from Dalea elegans. Bioorg. Med. Chem. 19: 3474–3482. doi:10.1016/j.bmc.2011.04.025
  • Clemente, A. 2000. Enzymatic protein hydrolysates in human nutrition. Trends Food Sci. Technol. 11: 254–262. doi:10.1016/S0924-2244(01)00007-3
  • Darusman, H. S., Rahminiwati, M., Sadiah, S., Batubara, I., Darusman, L. K., and Mitsunaga, T. 2012. Indonesian Kepel fruit (Stelechocarpus burahol) as oral deodorant. Res. J. Med. Plants. 6: 180–188. doi:10.3923/rjmp.2012.180.188
  • Dooley, T. 1997. Topical skin depigmentation agents. J. Dermatolog. Treat. 8: 275–283. doi:10.3109/09546639709160535
  • Haslaniza, H., Maskat, M. Y., Wan Aida, W. M., and Mamot, S. 2010. The effects of enzyme concentration, temperature and incubation time on nitrogen content and degree of hydrolysis of protein precipitate from cockle (Anadara granosa) meat wash water. Int. Food Res. J. 17: 147–152.
  • Ishikawa, M., Kawase, I., and Ishii, F. 2007. Combination of amino acids reduces pigmentation in B16F0 melanoma cells. Biol. Pharm. Bull. 30: 677–681. doi:10.1248/bpb.30.677
  • Jun, S. Y., Park, P. J., Jung, W. K., and Kim, S. K. 2004. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. Eur. Food Res. Technol. 219: 20–26. doi:10.1007/s00217-004-0882-9
  • Kiechle, F. L., and Zhang, X. 2002. Apoptosis: biochemical aspects and clinical implications. Clin. Chim. Acta. 326: 27–45. doi:10.1016/S0009-8981(02)00297-8
  • Li, H. B., Wong, C. C., Cheng, K. W., and Chen, F. 2008. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. Food Sci. Technol. 41: 385–390. doi:10.1016/j.lwt.2007.03.011
  • Neklyudov, A. D., Ivankin, A. N., and Berdutina, A. V. 2000. Properties and uses of protein hydrolysates (Review). Appl. Biochem. Microbiol. 36: 452–459. doi:10.1007/BF02731888
  • Nitha, B., De, S., Adhikari, S. K., Devasagayam, T. P., and Janardhanan, K. K. 2010. Evaluation of free radical scavenging activity of morel mushroom, Morchella esculenta mycelia: a potential source of therapeutically useful antioxidants. Pharmacol. Bio. 48: 453–460. doi:10.3109/13880200903170789
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231–1237. doi:10.1016/S0891-5849(98)00315-3
  • Schurink, M., Van Berkel, W. J. H., Wichers, H. J., and Boeriu, C. G. 2007. Novel peptides with tyrosinase inhibitory activity. Peptides 28: 485–495. doi:10.1016/j.peptides.2006.11.023
  • Shi, Y., Kovacs-Nolan, J., Jiang, B., Tsao, R., and Mine, Y. 2014. Antioxidant activity of enzymatic hydrolysates from eggshell membrane proteins and its protective capacity in human intestinal epithelial Caco-2 cells. J. Funct. Foods. 10: 35–45. doi:10.1016/j.jff.2014.05.004
  • Singh, D., Mishra, M., Gupta, M., Singh, P., Gupta, A., and Nema, R. 2012. Nitric oxide radical scavenging assay of bioactive compounds present in methanol extract of Centella asiatica. Int. J. Pham. Phamaceu. Sci. Res. 2: 42–44.
  • Tanzadehpanah, H., Asoodeh, A., and Chamani, J. 2012. An antioxidant peptide derived from Ostrich (Struthio camelus) egg white protein hydrolysates. Food Res. Int. 49: 105–111. doi:10.1016/j.foodres.2012.08.022
  • Tavano, O. L. 2013. Protein hydrolysis using proteases: an important tool for food biotechnology. J. Mol. Catal. B Enzym. 90: 1–11. doi:10.1016/j.molcatb.2013.01.011
  • Wang, B., Li, L., Chi, C. F., Ma, J. H., Luo, H. Y., and Xu, Y. F. 2013. Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chem. 138: 1713–1719. doi:10.1016/j.foodchem.2012.12.002
  • Wu, L. C., Chang, L. H., Chen, S. H., Fan, N. C., and Ho, J. A. 2009. Antioxidant activity and melanogenesis inhibitory effect of the acetonic extract of Osmanthus fragrans: A potential natural and functional food flavor additive. LWT - Food Sci. Technol. 42: 1513–1519. doi:10.1016/j.lwt.2009.04.004
  • Wu, L. C., Ho, J. A., Shieh, M. C., and Lu, I. W. 2005. Antioxidant and antiproliferative activities of spirulina and chlorella water extracts. J. Agric. Food Chem. 53: 4207–4212. doi:10.1021/jf0479517
  • Xu, G., Chen, Y., Shen, K., Wang, X., Li, F., and He, Y. 2014. The discovery of potentially selective human neuronal nitric oxide synthase (nNOS) inhibitors: a combination of pharmacophore modelling, CoMFA, virtual screening and molecular docking studies. Int. J. Mol. Sci. 15: 8553–8569. doi:10.3390/ijms15058553
  • Zhang, L. L., Zhou, Q. C., and Cheng, Y. Q. 2009. Effect of dietary carbohydrate level on growth performance of juvenile spotted babylon (Babylonia areolata Link 1807). Aquaculture 295: 238–242. doi:10.1016/j.aquaculture.2009.06.045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.