198
Views
9
CrossRef citations to date
0
Altmetric
Articles

Activity and Partial Characterization of Trypsin, Chymotrypsin, and Lipase in the Digestive Tract of Totoaba macdonaldi

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ananthi S, Ramasubburayan R, Palavesam A, Immanuel G. 2014. Optimization and purification of lipase through solid state fermentation by Bacillus cereus Msu as isolated from the gut of a marine fish Sardinella longiceps. Int J Pharm Pharm Sci. 6:291–98.
  • Applebaum SL, Perez R, Lazo JP, Holt GJ. 2001. Characterization of chymotrypsin activity during early ontogeny of larval red drum (Sciaenops ocellatus). Fish Physiol Biochem. 25:291–300.
  • Ásgeirsson B, Bjarnason JB. 1991. Structural and kinetic properties of chymotrypsin from Atlantic cod (Gadus morhua). Comparison with bovine trypsin. Comp Biochem Physiol B Comp Biochem. 99:327–35.
  • Ásgeirsson B, Hartemink R, Chlebowski JF. 1995. Alkaline phosphatase from Atlantic cod (Gadus morhua). Kinetic and structural properties which indicate adaptation to low temperatures. Comp Biochem Physiol B Biochem Mol Biol. 110:315–29.
  • Bjarnason JB. 2005. Fish serine proteinase and their pharmaceutical and cosmetic use. United States Patent US006846485B2, pp. 1–4.
  • Borgström B, Erlanson C. 1973. Pancreatic lipase and co-lipase. Interactions and effects of bile salts and other detergents. Eur J Biochem. 37:60–68.
  • Bougatef A. 2013. Trypsins from fish processing waste: characteristics and biotechnological applications - comprehensive review. J Clean Prod. 57:257–65.
  • Bougatef A, Souissi N, Fakhfakh N, Ellouz-Triki Y, Nasri M. 2007. Purification and characterization of trypsin from the viscera of sardine (Sardina pilchardus). Food Chem. 102:343–50.
  • Castillo-Yañez FJ, Pacheco-Aguilar R, García-Carreño FL, Navarrete-Del Toro MA, Félix-López M. 2006. Purification and biochemical characterization of chymotrypsin from the viscera of monterey sardine (Sardinops sagax caeruleus). Food Chem. 99:252–59.
  • Castillo-Yañez FJ, Pacheco-Aguilar R, Lugo-Sanchez ME, Garcia-Sanchez G, Quintero-Reyes IE. 2009. Biochemical characterization of an isoform of chymotrypsin from the viscera of Monterey sardine (Sardinops sagax caerulea), and comparison with bovine chymotrypsin. Food Chem. 112:634–39.
  • DOF (Official Journal of the Federation). 2001. Issued on August 22. Mexico City (Mexico): Secretary of Government. p. 1–3.
  • Erlanger BF, Kokowsky N, Cohen W. 1961. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys. 95:271–78.
  • Galaviz MA, López LM, García-Gasca A, Álvarez-González CA, True CD, Gisbert E. 2015. Digestive system development and study of acid and alkaline protease digestive capacities using biochemical and molecular approaches in totoaba (Totoaba macdonaldi) larvae. Fish Physiol Biochem. 41:1117–30.
  • García-Carreño FL, Dimes LE, Haard NF. 1993. Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal Biochem. 214:65–69.
  • Gisbert E, Nolasco H, Solovyev M. 2018. Towards the standardization of brush border purification and intestinal alkaline phosphatase quantification in fish with notes on other digestive enzymes. Aquaculture. 487:102–08.
  • Gjellesvik DR, Lombardo D, Walther BT. 1992. Pancreatic bile salt dependent lipase from cod (Gadus morhua): purification and properties. Biochim Biophys Acta. 1124:123–34.
  • González-Félix ML, Gatlin DM III, Perez-Velazquez M, Webb K, García-Ortega A, Hume M. 2018b. Red drum Sciaenops ocellatus growth and expression of bile salt-dependent lipase in response to increasing dietary lipid supplementation. Fish Physiol Biochem. 44:1319–31.
  • González-Félix ML, Perez-Velazquez M, Cañedo-Orihuela H. 2017. The effects of environmental salinity on the growth and physiology of totoaba Totoaba macdonaldi and shortfin corvina Cynoscion parvipinnis. J Fish Biol. 91:510–27.
  • González-Félix ML, Santana-Bejarano EB, Perez-Velazquez M, Villalba-Villalba AG. 2018a. Partial characterization, quantification and activity of pancreatic lipase in the gastrointestinal tract of Totoaba macdonaldi. Arch Biol Sci. 70:489–96.
  • Görgün S, Akpinar MA. 2012. Purification and characterization of lipase from the liver of carp, Cyprinus carpio L. (1758), living in Lake Tödürge (Sivas, Türkiye). Turk J Fish Aquat Sci. 12:207–15.
  • Gupta R, Beg QK, Lorenz P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol. 59:15–32.
  • Haard NF. 1992. A review of proteolytic enzymes from marine organisms and their application in the food industry. J Aquat Food Prod Technol. 1:17–35.
  • Heu MS, Kim HR, Pyeun JH. 1995. Comparison of trypsin and chymotrypsin from the viscera of anchovy, Engraulis japonica. Comp Biochem Physiol B Biochem Mol Biol. 112:557–67.
  • Houde A, Kademi A, Leblanc D. 2004. Lipases and their industrial applications: an overview. Appl Biochem Biotechnol. 118:155–70.
  • Iijima N, Tanaka S, Ota Y. 1998. Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream (Pagrus major). Fish Physiol Biochem. 18:59–69.
  • Javeed A, Mahendrakar NS. 1996. Autolysis and rancidity development in tropical freshwater fish viscera during fermentation. Bioresour Technol. 58:247–51.
  • Jellouli K, Bougatef A, Daassi D, Balti R, Barkia A, Nasri M. 2009. New alkaline trypsin from the intestine of grey triggerfish (Balistes capriscus) with high activity at low temperature: purification and characterisation. Food Chem. 116:644–50.
  • Jesús-de la Cruz K, Álvarez-González CA, Peña E, Morales-Contreras JA, Ávila-Fernández Á. 2018. Fish trypsins: potential applications in biomedicine and prospects for production. 3 Biotech. 8:186.
  • Khantaphant S, Benjakul S. 2010. Purification and characterization of trypsin from the pyloric caeca of brownstripe red snapper (Lutjanus vitta). Food Chem. 120:658–64.
  • Klomklao S. 2008. Digestive proteinases from marine organisms and their applications. Songklanakarin J Sci Technol. 30:37–46.
  • Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK. 2006a. Purification and characterization of trypsin from the spleen of tongol tuna (Thunnus tonggol). J Agric Food Chem. 54:5617–22.
  • Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK. 2007. Trypsin from the pyloric caeca of bluefish (Pomatomus saltatrix). Comp Biochem Physiol B Biochem Mol Biol. 148:382–89.
  • Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK, Saeki H. 2006b. Trypsins from yellowfin tuna (Thunnus albacores) spleen: purification and characterization. Comp Biochem Physiol B Biochem Mol Biol. 144:47–56.
  • Klomklao S, Kishimura H, Nonami Y, Benjakul S. 2009. Biochemical properties of two isoforms of trypsin purified from the intestine of skipjack tuna (Katsuwonus pelamis). Food Chem. 115:155–62.
  • Kurtovic I, Marshall SN, Simpson BK. 2006. Isolation and characterization of a trypsin fraction from the pyloric ceca of chinook salmon (Oncorhynchus tshawytscha). Comp Biochem Physiol B Biochem Mol Biol. 143:432–40.
  • Kurtovic I, Marshall SN, Zhao X, Simpson BK. 2009. Lipases from mammals and fishes. Rev Fish Sci. 17:18–40.
  • Kurtovic I, Marshall SN, Zhao X, Simpson BK. 2010. Purification and properties of digestive lipases from chinook salmon (Oncorhynchus tshawytscha) and New Zealand hoki (Macruronus novaezelandiae). Fish Physiol Biochem. 36:1041–60.
  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680–85.
  • Laufenberg G, Kunz B, Nystroem M. 2003. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresour Technol. 87:167–98.
  • Lazo JP, Mendoza R, Holt GJ, Aguilera C, Arnold CR. 2007. Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture. 265:194–205.
  • Léger C, Ducruet V, Flanzy J. 1979. Lipase et colipase de la truite arc-en-ciel. Quelques résultats récents. Ann Biol Anim Biochem Biophys. 19:825–32.
  • Lowe ME. 1997. Structure and function of pancreatic lipase and colipase. Annu Rev Nutr. 17:141–58.
  • Matus de la Parra A, Rosas A, Lazo JP, Viana MT. 2007. Partial characterization of the digestive enzymes of Pacific bluefin tuna Thunnus orientalis under culture conditions. Fish Physiol Biochem. 33:223–31.
  • Nardini M, Dijkstra BW. 1999. α/β hydrolase fold enzymes: the family keeps growing. Curr Opin Struc Biol. 9:732–37.
  • Rueda-López S, Martínez-Montaño E, Viana MT. 2017. Biochemical characterization and comparison of pancreatic lipases from the Pacific bluefin tuna, Thunnus orientalis; totoaba, Totoaba macdonaldi; and striped bass, Morone saxatilis. J World Aquacult Soc. 48:156–65.
  • Rust MB. 2002. Nutritional physiology. In: Halver JE, Hardy RW, editors. Fish nutrition. Amsterdam (The Netherlands): Academic Press; p. 367–452.
  • Scopes RK. 2002. Enzyme activity and assays. Encyclopedia of life sciences. London (UK): John Wiley & Sons, Ltd.; p. 1–6.
  • Shahidi F, Janak Kamil YVA. 2001. Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci Technol. 12:435–64.
  • Simpson BK. 2000. Digestive proteinases from marine animals. In: Haard NF, Simpson BK, editors. Seafood enzymes: utilization and influence on postharvest seafood quality. New York (NY): Marcel Dekker; p. 191–213.
  • Singh R, Gupta N, Goswami VK, Gupta R. 2006. A simple activity staining protocol for lipases and esterases. Appl Microbiol Biotechnol. 70:679–82.
  • Smith LC, Faustinella F, Chan L. 1992. Lipases: three-dimensional structure and mechanism of action. Curr Opin Struc Biol. 2:490–96.
  • Solovyev MM, Izvekova GI, Kashinskaya EN, Gisbert E. 2018. Dependence of pH values in the digestive tract of freshwater fishes on some abiotic and biotic factors. Hydrobiologia. 807:67–85.
  • Taniguchi A, Takano K, Kamoi I. 2001. Purification and properties of lipase from tilapia intestine.VI. Nippon Suisan Gakk. 67:78–84.
  • Terzyan S, Wang CS, Downs D, Hunter B, Zhang XC. 2000. Crystal structure of the catalytic domain of human bile salt activated lipase. Protein Sci. 9:1783–90.
  • Van Tilbeurgh H, Bezzine S, Cambillau C, Verger R, Carrière F. 1999. Colipase: structure and interaction with pancreatic lipase. Biochim Biophys Acta. 1441:173–84.
  • Vecchi S, Coppes Z. 1996. Marine fish digestive proteases – relevance to food industry and the South-West Atlantic region: a review. J Food Biochem. 20:193–214.
  • Villalba-Villalba AG, Ramírez-Suárez JC, Pacheco-Aguilar R, Valenzuela-Soto EM, Lugo-Sánchez ME, Figueroa-Soto CG. 2013. Purification and characterization of chymotrypsin from viscera of vermiculated sailfin catfish, Pterygoplichthys disjunctivus, weber, 1991. Fish Physiol Biochem. 39:121–30.
  • Yadav RP, Saxena RK, Gupta R, Davidson WS. 1998. Rapid zymogram for lipase. Bio Techniques. 24:754–56.
  • Yaghoubi M, Mozanzadeh MT, Marammazi JG, Safari O, Gisbert E. 2016. Dietary replacement of fish meal by soy products (soybean meal and isolated protein) in silvery-black porgy juveniles (Sparidentex hasta). Aquaculture. 464:50–59.
  • Yang F, Su WJ, Lu BJ, Wu T, Sun LC, Hara K, Cao MJ. 2009. Purification and characterization of chymotrypsins from the hepatopancreas of crucian carp (Carassius auratus). Food Chem. 116:860–66.
  • Zhou L, Budge SM, Ghaly AE, Brooks MS, Dave D. 2011. Extraction, purification and characterization of fish chymotrypsin: a review. Am J Biochem Biotechnol. 7:104–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.