88
Views
0
CrossRef citations to date
0
Altmetric
Articles

Enzymatic Hydrolysis of Pacific White Shrimp Residue (Litopenaeus vannamei) with Ultrasound Aid

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abreu ADS, De Souza MM, Da Rocha M, Wasielesky WF, Prentice C. 2019. Functional properties of white shrimp (Litopenaeus vannamei) by-products protein recovered by isoelectric solubilization/precipitation. J Aquat Food Prod Technol. 28(6):649–57.
  • Adler-Nissen J. 1976. Enzymatic hydrolysis of proteins for increased solubility. J Agric Food Chem. 24(6):1090–93.
  • Aguilar JGS, Sato HH. 2018. Microbial proteases: production and application in obtaining protein hydrolysates. Int Food Res J. 103:253–62.
  • AOAC. 2000. Official methods of analysis. 17th edn ed. Washington: Association of Official Analytical Chemists.
  • Armenta RE, Isabbl GL. 2009. Stability studies on astaxanthin extracted from fermented shrimp byproducts. J Agric Food Chem. 57(14):6095–100.
  • Armenta-López R, Guerrero LI, Huerta S. 2002. Astaxanthin extraction from shrimp waste by lactic fermentation and enzymatic hydrolysis of the carotenoprotein complex. J Food Sci. 67(3):1002–06.
  • Assis OBG, Britto D de. 2008. Processo básico de extração de quitinas e produção de quitosana a partir de resíduos da carcinicultura. Rev Bras agrociencia. 14(1):91–100.
  • Britton G, Liaaen-Jensen S, Pfander H. 2008. Carotenoids: HandBook. 4th ed. Natural Functions. Birkhäuser Basel.
  • Cheng D, Zhang Y, Liu H, Zhang H, Tan K, Ma H, Li S, Zheng H. 2019. An improving method for extracting total carotenoids in an aquatic animal chlamys nobilis. Food Chem. 280(May):45–50.
  • Chi CF, Hu FY, Wang B, Li T, Ding GF. 2015. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. J Funct Foods. 15:301–13.
  • Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B. 2008. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov Food Sci Emerg Technol. 9(1):85–91.
  • Djellouli M, López-Caballero ME, Arancibia MY, Karam N, Martínez-Alvarez O. 2020. Antioxidant and antimicrobial enhancement by reaction of protein hydrolysates derived from shrimp by-products with glucosamine. Waste and Biomass Valori. 11(6):2491–505.
  • Dun Y, Li Y, Xu J, Hu Y, Zhang C, Liang Y, Zhao S. 2019. Simultaneous fermentation and hydrolysis to extract chitin from crayfish shell waste. Int J Biol Macromol. 123:420–26.
  • Food and Agriculture Organization. 2020. Fishery and aquaculture statistics. global production by production source 1950-2018 (FishstatJ). FAO fish aquac dep Rome, Italy. www.fao.org/fishery/statistics/software/fishstatj/en.
  • Ghorbel-Bellaaj O, Jellouli K, Maalej H. 2017. Shrimp processing by-products protein hydrolysates: Evaluation of antioxidant activity and application in biomass and proteases production. Biocatal Biotransformation. 35(4):287–97.
  • Guo N, Sun J, Zhang Z, Mao X. 2019. Recovery of chitin and protein from shrimp head waste by endogenous enzyme autolysis and fermentation. J Ocean Univ China. 18(3):719–26.
  • Holanda HD, Netto FM. 2006. Recovery of components from shrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis. J Food Sci. 71(5):298–303.
  • Idowu AT, Igiehon OO, Idowu S, Olatunde OO, Benjakul S. 2020. Bioactivity potentials and general applications of fish protein hydrolysates. Int J Pept Res Ther. 27(1):109–18.
  • Jemil I, Jridi M, Nasri R, Ktari N, Ben Slama-Ben Salem R, Mehiri M, Hajji M, Nasri M. 2014. Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochem. 49(6):963–72.
  • Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK. 2009. Extraction of carotenoprotein from black tiger shrimp shells with the aid of bluefish trypsin. J Food Biochem. 33(2):201–17.
  • Latorres JM, Rios DG, Saggiomo G, Wasielesky W, Prentice-Hernandez C. 2018. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei). J Food Sci Technol. 55(2):721–29.
  • Mao X, Guo N, Sun J, Xue C. 2017. Comprehensive utilization of shrimp waste based on biotechnological methods: A review. J Clean Prod. 143:814–23.
  • Muri EMF. 2014. Proteases virais: Importantes alvos terapêuticos de compostos peptideomiméticos. Quim Nova. 37(2):308–16.
  • Narayanasamy A, Balde A, Raghavender P, Shashanth D, Abraham J, Joshi I, Nazeer RA. 2020. Isolation of marine crab (Charybdis natator) leg muscle peptide and its anti-inflammatory effects on macrophage cells. Biocatal Agric Biotechnol. 25(February):101577.
  • Nunes AJP, Sabry-Neto H, Oliveira-Neto S, Burri L. 2019. Feed preference and growth response of juvenile Litopenaeus vannamei to supplementation of marine chemoattractants in a fishmeal-challenged diet. J World Aquac Soc. 50(6):1048–63.
  • Ogawa M, Maia EL, Fernandes AC, Nunes ML, MEB de Oliveira, Freitas ST. 2007. Resíduos do beneficiamento do camarão cultivado: Obtenção de pigmentos carotenóides. Ciência e Tecnol Aliment. 27(2):333–37.
  • Pattanaik SS, Sawant PB, Xavier KAM, Dube K, Srivastava PP, Dhanabalan V, Chadha NK. 2020. Characterization of carotenoprotein from different shrimp shell waste for possible use as supplementary nutritive feed ingredient in animal diets. Aquaculture. 515:734594.
  • Phuong PTD, Minh NC, Cuong HN, Van Minh N, Han NT, Van Hoa N, Yen HTH, Trung TS. 2017. Recovery of protein hydrolysate and chitosan from black tiger shrimp (Penaeus monodon) heads: Approaching a zero waste process. J Food Sci Technol. 54(7):1850–56.
  • Pires J, Torres PB, dos Santos DYAC, Chow F. 2017. Ensaio em microplaca do potencial antioxidante através do método de sequestro do radical livre DPPH para extratos de algas. Inst Biociências, Univ São Paulo. http://www2.ib.usp.br/index.php?option=com_docman&task=doc_view&gid=72&tmpl=component&format=raw&Itemid=98
  • Rebeca BD, Peña-Vera MT, Días-Castañeda M. 1991. Production of fish protein hydrolysates with bacterial proteases Yield and Nutritional Value. J Food Sci. 56(2):309–14.
  • Rebouças JSA, Oliveira FPS, AC de S Araujo, Gouveia HL, Latorres JM, Martins VG, Prentice Hernández C, Tesser MB. 2021. Shellfish industrial waste reuse. Crit Rev Biotechnol. 0(0):1–17.
  • Rodriguez-Amaya DB, Kimura M. 2004. Handbook for carotenoid analysis. Transp Res Rec J Transp Res Board. 2068(1):71–77.
  • Routray W, Dave D, Cheema SK, Ramakrishnan V V, Pohling J. 2019. Biorefinery approach and environment-friendly extraction for sustainable production of astaxanthin from marine wastes. Crit Rev Biotechnol. 39(4):469–88.
  • Sachindra NM, Bhaskar N, Mahendrakar NS. 2005. Carotenoids in different body components of Indian shrimps. J Sci Food Agric. 85(1):167–72.
  • Senphan T, Benjakul S, Kishimura H. 2014. Characteristics and antioxidative activity of carotenoprotein from shells of pacific white shrimp extracted using hepatopancreas proteases. Food Biosci. 5:54–63.
  • Shavandi A, Hu Z, Teh SS, Zhao J, Carne A, Bekhit A, AEDA Bekhit. 2017. Antioxidant and functional properties of protein hydrolysates obtained from squid pen chitosan extraction effluent. Food Chem. 227:194–201.
  • Sila A, Sayari N, Balti R, Martinez-Alvarez O, Nedjar-Arroume N, Moncef N, Bougatef A. 2014. Biochemical and antioxidant properties of peptidic fraction of carotenoproteins generated from shrimp by-products by enzymatic hydrolysis. Food Chem. 148:445–52.
  • Sindhua S, Sherief PM. 2011. Extraction, characterization, antioxidant and anti-inflammatory properties of carotenoids from the shell waste of Arabian red shrimp aristeus alcocki, ramadan 1938. Open Conf Proc J. 2(1):95–103.
  • Sowmya R, Rathinaraj K, Sachindra NM. 2011. An autolytic process for recovery of antioxidant activity rich carotenoprotein from shrimp heads. Mar Biotechnol (NY). 13(5):918–27.
  • Suleria HAR, Gobe G, Masci P, Osborne SA. 2016. Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery. Trends Food Sci Technol. 50:44–55.
  • Sumantha A, Larroche C, Pandey A. 2006. Microbiology and industrial biotechnology of food–grade proteases: A perspective. Food Technol Biotechnol. 44(2):211–20.
  • Wu HC, Chen HM, Shiau CY. 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res Int. 36(9–10):949–57.
  • Yan N, Chen X. 2015. Don’t waste seafood waste: turning cast-off shells into nitrogen-rich chemicals would benefit economies and the environment. Nature. 524(7564):155–57.
  • Ya T, Simpson BK, Ramaswamy H, Yaylayan V, Smith JP, Hudon C. 1991. Carotenoproteins from lobster waste as a potential feed supplement for cultured salmonids. Food Biotechnol. 5(2):87–93.
  • Yildirim A, Mavi A, Kara AA. 2021. Determination of antioxidant and antimicrobial activities of rumex crispus L. extracts. Extracts. 49(8):4083–89.
  • Zhang H, Jin Y, Deng Y, Wang D, Zhao Y. 2012. Production of chitin from shrimp shell powders using Serratia marcescens B742 and Lactobacillus plantarum ATCC 8014 successive two-step fermentation. Carbohydr Res. 362(May):13–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.