1,513
Views
25
CrossRef citations to date
0
Altmetric
Reports and Reflections

Learning to Deflect: Conceptual Change in Physics During Digital Game Play

, &

REFERENCES

  • Amin, T. G. (2009). Conceptual metaphor meets conceptual change. Human Development, 52(3), 165–197. doi:10.1159/000213891
  • Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: Bradford Books.
  • Carey, S. (1988). Conceptual differences between children and adults. Mind & Language, 3(3), 167–181. doi:10.1111/mila.1988.3.issue-3
  • Carey, S. (1992). The origin and evolution of everyday concepts. Cognitive Models of Science, 15, 89–128.
  • Carey, S. (1999). Sources of conceptual change. In E. K. Scholnick, K. Nelson, & P. Miller (Eds.), Conceptual development: Piaget’s legacy (pp. 292–326). Mahwah, NJ: Erlbaum.
  • Carey, S., & Spelke, E. (1994). Domain-specific knowledge and conceptual change. In L. Hirschfeld & S. Gelman (Eds.), Mapping the mind: Domain specificity in cognition and culture (pp. 169–200). Cambridge, UK: Cambridge University Press.
  • Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152. doi:10.1207/s15516709cog0502_2
  • Chi, M. T., Roscoe, R. D., Slotta, J. D., Roy, M., & Chase, C. C. (2012). Misconceived causal explanations for emergent processes. Cognitive Science, 36, 1–61.
  • Clark, D. B. (2006). Longitudinal conceptual change in students’ understanding of thermal equilibrium: An examination of the process of conceptual restructuring. Cognition and Instruction, 24(4), 467–563. doi:10.1207/s1532690xci2404_3
  • Clark, D. B., & Linn, M. C. (2013). The knowledge integration perspective: Connections across research and education. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed., pp. 520–538). New York, NY: Routledge.
  • Clark, D. B., & Martinez-Garza, M. (2012). Prediction and explanation as design mechanics in conceptually integrated digital games to help players articulate the tacit understandings they build through game play. In C. Steinkuehler, K. Squire, & S. Barab (Eds.), Games, Learning, and Society: Learning and Meaning in the Digital Age (pp. 279–305). Cambridge, UK: Cambridge University Press.
  • Clark, D. B., Nelson, B. C., Chang, H.-Y., Martinez-Garza, M., Slack, K., & D’Angelo, C. M. (2011). Exploring Newtonian mechanics in a conceptually-integrated digital game: Comparison of learning and affective outcomes for students in Taiwan and the United States. Computers & Education, 57(3), 2178–2195. doi:10.1016/j.compedu.2011.05.007
  • Clark, D. B., Nelson, B., Sengupta, P., & D’Angelo, C. M. (2009). Rethinking science learning through digital games and simulations: Genres, examples, and evidence. Paper commissioned for the National Research Council Workshop on Gaming and Simulations, October 6–7, Washington, DC.
  • Clark, D. B., Sengupta, P., Brady, C., Martinez-Garza, M., & Killingsworth, S. (2015). Disciplinary integration in digital games for science learning. International STEM Education Journal, 2, 2. doi:10.1186/s40594-014-0014-4
  • Clark, D. B., Tanner-Smith, E., & Killingsworth, S. (2015). Digital games, design, and learning: A systematic review and meta-analysis. Review of Educational Research. Advance online publication. doi:10.3102/0034654315582065
  • Csikszentmihalyi, M. (1991). Flow: The psychology of optimal experience (Vol. 41). New York, NY: HarperPerennial.
  • Csikszentmihalyi, M. (2014). Learning, “flow,” and happiness. In M. Csikszentmihalyi (Ed.), Applications of Flow in Human Development and Education (pp. 153–172). New York, NY: Springer.
  • Dickes, A. C., & Sengupta, P. (2013). Learning natural selection in 4th grade with multi-agent-based computational models. Research in Science Education, 43(3), 921–953. doi:10.1007/s11165-012-9293-2
  • diSessa, A. (1983). Phenomenology and the evolution of intuition. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 15–33). Hillsdale, NJ: Erlbaum.
  • diSessa, A. (1988). Knowledge in pieces. In G. Forman & P. Pufall (Eds.), Constructivism in the computer age (pp. 49–70). Hillsdale, NJ: Erlbaum.
  • diSessa, A. A. (1991). An overview of Boxer. Journal of Mathematical Behavior, 10, 3–15.
  • diSessa, A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2–3), 105–225. doi:10.1080/07370008.1985.9649008
  • diSessa, A. (2000). Changing minds: Computers, learning and literacy. Cambridge, MA: MIT Press.
  • diSessa, A. (2007). An interactional analysis of clinical interviewing. Cognition and Instruction, 25(4), 523–565. doi:10.1080/07370000701632413
  • diSessa, A., Gillespie, N. M., & Esterly, J. B. (2004). Coherence versus fragmentation in the development of the concept of force. Cognitive Science, 28, 843–900. doi:10.1207/s15516709cog2806_1
  • diSessa, A. A., & Sherin, B. L. (1998). What changes in conceptual change? International Journal of Science Education, 20(10), 1155–1191. doi:10.1080/0950069980201002
  • Edwards, L. D. (1995). Microworlds as representations. In A. A. diSessa, C. Hoyles, & R. Noss ( Eds.), Computers and Exploratory Learning (pp. 127–154). Berlin/Heidelberg: Springer-Verlag.
  • Ericsson, K. A., & Simon, H. A. (1998). How to study thinking in everyday life: Contrasting think-aloud protocols with descriptions and explanations of thinking. Mind, Culture, and Activity, 5(3), 178–186. doi:10.1207/s15327884mca0503_3
  • Galili, I., & Hazan, A. (2000). Learners’ knowledge in optics: Interpretation, structure and analysis. International Journal of Science Education, 22(1), 57–88. doi:10.1080/095006900290000
  • Gee, J. P. (2008). Learning and games. The Ecology of Games: Connecting Youth, Games, and Learning, 3, 21–40.
  • Gomm, R., Hammersley, M., & Foster, P. (2000). Case study method: Key issues, key texts. Thousand Oaks, CA: Sage.
  • Gupta, A., Elby, A., & Conlin, L. D. (2014). How substance-based ontologies for gravity can be productive: A case study. Physical Review Special Topics-Physics Education Research, 10(1), 010113. doi:10.1103/PhysRevSTPER.10.010113
  • Gupta, A., Hammer, D., & Redish, E. F. (2010). The case for dynamic models of learners’ ontologies in physics. Journal of the Learning Sciences, 19(3), 285–321. doi:10.1080/10508406.2010.491751
  • Halloun, I. A., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53(11), 1056. doi:10.1119/1.14031
  • Hammer, D. (1996). Misconceptions or p-prims: How may alternative perspectives of cognitive structure influence instructional perceptions and intentions? Journal of the Learning Sciences, 5(2), 97–127. doi:10.1207/s15327809jls0502_1
  • Hestenes, D. (1992). Modeling games in the Newtonian world. American Journal of Physics, 60, 732–748.
  • Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force Concept Inventory. The Physics Teacher, 30(3), 141–158. doi:10.1119/1.2343497
  • Holbert, N., & Wilensky, U. (2011). FormulaT racing: Designing a game for kinematic exploration and computational thinking. In C. Steinkuehler, C. Martin, & A. Ochsner (Eds.), Proceedings of 7th Annual GLS Conference, June 15–17, Madison, WI. Pittsburgh, PA: ETC Press.
  • Hoyles, C., Noss, R., & Adamson, R. (2002). Rethinking the microworld idea. Journal of Educational Computing Research, 27(1), 29–53. doi:10.2190/U6X9-0M6H-MU1Q-V36X
  • Jeppsson, F., Haglund, J., Amin, T. G., & Strömdahl, H. (2013). Exploring the use of conceptual metaphors in solving problems on entropy. Journal of the Learning Sciences, 22(1), 70–120. doi:10.1080/10508406.2012.691926
  • Kuhn, D. (1995). Microgenetic study of change: What has it told us? Psychological Science, 6, 133–139. doi:10.1111/j.1467-9280.1995.tb00322.x
  • Kuhn, D., Schauble, L., & Garcia-Mila, M. (1992). Cross-domain development of scientific reasoning. Cognition and Instruction, 9(4), 285–327. doi:10.1207/s1532690xci0904_1
  • Levy, S. T., & Wilensky, U. (2008). Inventing a “mid level” to make ends meet: Reasoning between the levels of complexity. Cognition and Instruction, 26(1), 1–47. doi:10.1080/07370000701798479
  • McCloskey, M. (1983). Naive theories of motion. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 299–324). Hillsdale, NJ: Erlbaum.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Thousand Oaks, CA: Sage.
  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.
  • Parnafes, O. (2007). What does “fast” mean? Understanding the physical world through computational representations. Journal of the Learning Sciences, 16(3), 415–450. doi:10.1080/10508400701413443
  • Petri, J., & Niedderer, H. (1998). A learning pathway in high-school level quantum atomic physics. Science Education, 20, 1075–1088. doi:10.1080/0950069980200905
  • Reiner, M., Slotta, J. D., Chi, M. T. H., & Resnick, L. B. (2000). Naive physics reasoning: A commitment to substance-based conceptions. Cognition and Instruction, 18(1), 1–34. doi:10.1207/S1532690XCI1801_01
  • Rieber, L. P. (1996). Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games. Educational Technology Research and Development, 44(2), 43–58. doi:10.1007/BF02300540
  • Roschelle, J. (1992). Learning by collaborating: Convergent conceptual change. Journal of the Learning Sciences, 2(3), 235–276. doi:10.1207/s15327809jls0203_1
  • Sengupta, P., Farris, A. V., & Wright, M. (2012). From agents to continuous change via aesthetics: Learning mechanics with visual agent-based computational modeling. Technology, Knowledge and Learning, 17(1–2), 23–42. doi:10.1007/s10758-012-9190-9
  • Sengupta, P., & Wilensky, U. (2009). Learning electricity with NIELS: Thinking with electrons and thinking in levels. International Journal of Computers for Mathematical Learning, 14, 21–50. doi:10.1007/s10758-009-9144-z
  • Sengupta, P., & Wilensky, U. (2011). Lowering the learning threshold: Multi-agent-based models and learning electricity. In M. S. Khine & I. M. Saleh (Eds.), Models and Modeling (pp. 141–171). Dordrecht, the Netherlands: Springer.
  • Sherin, B., diSessa, A., & Hammer, D. (1993). Dynaturtle revisited: Learning physics through collaborative design of a computer model. Interactive Learning Environments, 3(2), 91–118. doi:10.1080/1049482930030201
  • Siegler, R. S., & Crowley, K. (1991). The microgenetic method: A direct means for studying cognitive development. American Psychologist, 46(6), 606–620. doi:10.1037/0003-066X.46.6.606
  • Smith, C., Maclin, D., Grosslight, L., & Davis, H. (1997). Teaching for understanding: A comparison of two approaches to teaching students about matter and density. Cognition and Instruction, 15(3), 317–393. doi:10.1207/s1532690xci1503_2
  • Smith, J., diSessa, A., & Roschelle, J. (1993). Misconceptions reconceived: A constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3(2), 115–163. doi:10.1207/s15327809jls0302_1
  • Squire, K., Barnett, M., Grant, J. M., & Higginbotham, T. (2004). Electromagnetism supercharged! Learning physics with digital simulation games. Paper presented at the Proceedings of the Sixth International Conference of the Learning Sciences, June 22–26, Mahwah, NJ.
  • Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park, CA: Sage.
  • Taber, K. S. (2008). Exploring conceptual integration in student thinking: Evidence from a case study. International Journal of Science Education, 30(14), 1915–1943. doi:10.1080/09500690701589404
  • Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts of rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 181–234). Albany: State University of New York Press.
  • Vosniadou, S. (2013). Conceptual change in learning and instruction: The framework theory approach. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed., pp. 11–30). New York, NY: Routledge.
  • White, B. Y. (1984). Designing computer games to help physics students understand Newton’s laws of motion. Cognition and Instruction, 1(1), 69–108. doi:10.1207/s1532690xci0101_4
  • White, B. Y. (1993). ThinkerTools: Causal models, conceptual change, and science education. Cognition and Instruction, 10(1), 1–100. doi:10.1207/s1532690xci1001_1
  • Wiser, M. (1995). Use of history of science to understand and remedy students’ misconceptions about heat and temperature. In D. N. Perkins, J. L. Schwartz, M. M. West, & M. S. Wiske (Eds.), Software Goes to School: Teaching for Understanding with New Technologies (pp. 23–38). New York, NY: Oxford University Press.
  • Yin, R. K. (1994). Case study research: Design and methods (Vol. 5, 2nd ed.) Thousand Oaks, CA: Sage.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.