References

  • American Association for the Advancement of Science. 2010. Vision and Change: A Call to Action. Washington, DC: AAAS. http://visionandchange.org/files/2010/03/VC_report.pdf.
  • Association of American Medical Colleges and Howard Hughes Medical Institute. 2009. Scientific Foundations for Future Physicians. Washington, DC; Chevy Chase, MD: AAMC-HHMI. www.hhmi.org/grants/sffp.html.
  • Ballas, S. K. and M. J. Marcolina. 2000. Determinants of red cell survival and erythropoietic activity in patients with sickle cell anemia in the steady state. Hemoglobin. 24: 277–286.
  • Belland, B. R., J. Gu, N. J. Kim, D. J. Turner, and D. M. Weiss. 2019. Exploring epistemological approaches and beliefs of middle school students in problem-based learning. The Journal of Educational Research. 112: 643–655. doi:https://doi.org/10.1080/00220671.2019.1650701.
  • Bunn, H. F. 2013. Erythropoietin. Cold Spring Harbor Perspectives in Medicine. 3: a011619.
  • Collins, A., J. Brown, and S. Newman. 1989. Cognitive apprenticeship: teaching the craft of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, Learning, and Instruction: Essays in Honor of Robert Glaser, pp. 453–494. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
  • Erslev, A. J. and A. Besarab. 1997. Erythropoietin in the pathogenesis and treatment of the anemia of chronic renal failure. Kidney International. 51: 622–630.
  • Erslev, A. J., J. Wilson, and J. Caro. 1987. Erythropoietin titers in anemic, nonuremic patients. J. Lab. Clin. Med. 109: 429–433.
  • Fonseca, L. L. and E. O. Voit. 2015. Comparison of mathematical frameworks for modeling erythropoiesis in the context of malaria infection. Mathematical Biosciences. 270: 224–236.
  • Galison, P. L. 1997. Image and Logic: A Material Culture of Microphysics. Chicago, IL: University of Chicago Press.
  • Gentiles, L., L. Caudill, M. Fetea, A. Hill, K. Hoke, B. Lawson, O. Lipan, M. Kerckhove, C. Parish, K. Stenger, and D. Szajda. 2012. Challenging disciplinary boundaries in the first year: A New introductory integrated science course for STEM majors. Journal of College Science Teaching. 41: 44–50.
  • Handelsman, J., S. Miller, and C. Pfund. 2006. Scientific Teaching. New York, NY: W. H. Freeman.
  • Hmelo, C. E. 1998. Problem-based learning: Effects on the early acquisition of cognitive skill in medicine. Journal of the Learning Sciences. 7: 173–208.
  • Hoffmann, S., C. Pohl, and J. Hering. 2017. Methods and procedures of transdisciplinary knowledge integration: empirical insights from four thematic synthesis processes. Ecology and Society. 22: 27.
  • Howes, A., D. Kaneva, D. Swanson, and J. Williams. 2013. Re-envisioning STEM education: Curriculum, assessment and integrated, interdisciplinary studies. A Report for The Royal Society’s Vision for Science and Mathematics Education. London, UK.
  • Jelkmann, W. 2011. Regulation of erythropoietin production. Journal of Physiology (London). 589: 1251–1258.
  • Jungck, J. R. 2011. Mathematical biology education: modeling makes meaning. Mathematical Modelling of Natural Phenomena. 6: 1–21.
  • Jungck, J. R. 2012. Chapter three – mathematics make microbes beautiful, beneficial, and bountiful. In S. Sariaslani, and G. M. Gadd (Ed.), Advances in Applied Microbiology, pp. 37–80. Oxford, UK: Academic Press.
  • Lam, J. 1993. Model reduction of delay systems using Padé approximants. International Journal of Control. 57: 377.
  • Marsteller, P., L. de Pillis, A. Findley, K. Joplin, J. Pelesko, K. Nelson, K. Thompson, D. Usher, and J. Watkins. 2010. Toward integration: From quantitative biology to mathbio-biomath? CBE Life Sciences Education. 9(3): 165–171. doi:https://doi.org/10.1187/cbe.10-03-0053.
  • Mocek, W. T., R. Rudnicki, and E. O. Voit. 2005. Approximation of delays in biochemical systems. Mathematical Bioscences. 198: 190–216.
  • National Research Council. 2003. BIO2010: Transforming Undergraduate Education for Future Research Biologists. Washington, DC: The National Academies Press. doi:https://doi.org/10.17226/10497.
  • National Research Council. 2009. A New Biology for the 21st Century. Washington, DC: The National Academies Press.
  • National Research Council. 2014. Developing Assessments for the Next Generation Science Standards. Washington, DC: The National Academies Press.
  • National Science Foundation. 1996. Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology. Arlington, VA: National Science Foundation.
  • Newell, W. H. 2000. Transdisciplinarity reconsidered. In M. A. Somerville, and D. J. Rapport (Eds), Transdisciplinarity, pp. 42–48. Oxford, UK: EOLSS: Advances in Sustainable Development.
  • Sahin, M. 2010. Effects of problem-based learning on university students’ epistemological beliefs about physics and physics learning and conceptual understanding of Newtonian mechanics. Journal of Science Educcation and Technology. 19: 266–275.
  • Savageau, M. A. 1991a. The challenge of reconstruction. The New Biologist. 3: 101–102.
  • Savageau, M. A. 1991b. Reconstructionist molecular biology. The New Biologist. 3: 190–197.
  • Shander, A., L. T. Goodnough, M. Javidroozi, M. Auerbach, J. Carson, W. B. Ershler, M. Ghiglione, J. Glaspy, and I. Lew. 2014. Iron deficiency anemia—Bridging the knowledge and practice gap. Transfusion Medicine Reviews. 28: 156–166.
  • Star, S. L. and J. R. Griesemer. 1989. Institutional ecology, ‘translations’ and boundary objects: Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907-39. Social Studies of Science. 19: 387–420.
  • Steen, L. A. 2005. Math and Bio 2010: Linking Undergraduate Disciplines. Washington, DC: Mathematical Association of America.
  • Tripp, B. and E. E. Shortlidge. 2019. A framework to guide undergraduate education in interdisciplinary science. CBE—Life Sciences Education. 18: 2.
  • Usher, D. C., T. A. Driscoll, P. Dhurjati, J. A. Pelesko, L. F. Rossi, G. Schleiniger, K. Pusecker, and H. B. White. 2010. A transformative model for undergraduate quantitative biology education. CBE Life Sciences Education. 9(3): 181–188. doi:https://doi.org/10.1187/cbe.10-03-0029.
  • Voit, E. O. 2013. Biochemical systems theory: A review. ISRN Biomathematics. 2013: 1–53.
  • Voit, E. O. 2016. The Inner Workings of Life: Vignettes in Systems Biology. Cambridge, UK; New York, NY: Cambridge University Press.
  • Voit, E. O. and M. L. Kemp. 2011. So, you want to be a systems biologist? Determinants for creating graduate curricula in systems biology. IET Systems Biology. 5: 70–79.
  • Voit, E. O., H. A. Martens, and S. W. Omholt. 2015. 150 years of the mass action law. PLoS Computational Biology. 11: e1004012.
  • Voit, E. O., W. C. Newstetter, and M. L. Kemp. 2012. A feel for systems. Molecular Systems Biology. 8: 609.
  • Waldrop, L. D., S. C. Adolph, C. G. Diniz Behn, E. Braley, J. A. Drew, R. J. Full, L. J. Gross, J. A. Jungck, B. Kohler, J. C. Prairie, et al. 2015. Using active learning to teach concepts and methods in quantitative biology. Integrative and Comparative Biology. 55: 933–948.
  • Wedro, B. 2016. What Is Blood Doping? Risks, Side Effects, EPO, Lance Armstrong. MedicineNet. www.medicinenet.com/blood_doping/views.htm. Accessed 10 November 2016.
  • Wikipedia. 2018. Trading zones. In Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Trading_zones&oldid=849217252. Accessed 12 May 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.