437
Views
1
CrossRef citations to date
0
Altmetric
Articles

Biological Models for Finite Mathematics

References

  • Abalo, K., S. Clayton, F. Cuffney, P. Ryan, and P. Schuette. 2004. Biodiversity ESTEEM module. https://www.bioquest.org/esteem/esteem_details.php?product_id=2769.
  • Aikens, M. L. and E. L. Dolan. 2014. Teaching quantitative biology: Goals, assessments, and resources. Molecular Biology of the Cell. 25(22): 3478–3481. doi:https://doi.org/10.1091/mbc.e14-06-1045.
  • Arganbright, D. 2005. Enhancing mathematical graphical displays in excel through animation. Spreadsheets in Education (eJSiE). 2(1). Article 8: 24. http://epublications.bond.edu.au/ejsie/vol2/iss1/8.
  • Arai, K., T. Harayama, S. Sunada, and P. Davis. 2012. Randomness in a Galton board from the viewpoint of predictability: sensitivity and statistical bias of output states. Physical Review E. 86(5): 056216.
  • Baum, D. A., S. Smith, and S. Donovan. 2005. The tree-thinking challenge. Science. 310(5750): 979–980. http://www.tree-thinking.org/
  • Benacka, J. and S. Ceretkova. 2014. Modeling harvesting animal population at high school with spreadsheets – the case of Moby Dick. Spreadsheets in Education. 7(3), Article 3, 9.
  • Ben-Jacob, E., I. Cohen, and H. Levine. 2000. Cooperative self-organization of microorganisms. Advances in Physics. 49: 395–554.
  • Berkowitz, A. R., M. E. Ford, and C. A. Brewer. 2005. A framework for integrating ecological literacy, civics literacy, and environmental citizenship in environmental education. In E. Johnson, E. A. Johnson, and M. J. Mappin (Eds.), Environmental Education and Advocacy: Changing Perspectives of Ecology and Education, pp. 227–266. Cambridge, UK: Cambridge University Press.
  • Biehler, R. 1991. Computers in probability education. In R. Kapadia and M. Borovcnik (Eds.), Chance Encounters: Probability in Education. Vol. 12, pp. 169–211. Dordrecht: Springer Science & Business Media.
  • Biró, P., D. F. Manlove, and R. Rizzi. 2009. Maximum weight cycle packing in directed graphs, with application to kidney exchange programs. Discrete Mathematics Algorithms Applications. 1(04): 499–517.
  • Bliss, P. and D. Brown. 2009. Geometric properties of three dimensional fractal trees. Chaos, Solitons and Fractals. 42(1): 119–124.
  • Bodine, E., R. Panoff, E. Voit, and A. Weissstein. 2020. Agent-based modeling and simulation in mathematical biology education. Bulletin of Mathematical Biology. 82(8): 1–18.
  • Brambila, F., ed. 2017. Fractal Analysis: Applications in Health Sciences and Social Sciences. BoD–Books on Demand.
  • Brown, D. 2014. Experimental mathematics for the first year student. PRIMUS. 24(4): 281–293.
  • Carlton, M. 2005. Pedigrees, prizes, and prisoners: The misuse of conditional probability. Journal of Statistics Education. 13(2): 12.
  • Carvajal-Rodríguez, A. 2012. Teaching the fluctuation test in silico by using mutate: a program to distinguish between the adaptive and spontaneous mutation hypotheses. Biochemistry and Molecular Biology Education. 40(4): 277–283.
  • Ceccherini-Silberstein, T. and M. Coornaert. 2010. The garden of Eden theorem. In T. Ceccherini-Silberstein, and M. Coornaert (Eds.), Cellular Automata and Groups. Springer Monographs in Mathematics, pp. 111–149 Berlin, Germany: Springer.
  • Cevri, M. and D. Üstündağ. 2016. Prediction of the probabilities of the transmission of genetic traits within Bayesian logical inference. Acta Physica Polonica, A. 130(1): 45–50.
  • Chen, M. M., S. M. Scott, and J. D. Stevens. 2018. Technology as a tool in teaching quantitative biology at the secondary and undergraduate levels: a review. Letters in Biomathematics. 5(1): 30–48. doi:https://doi.org/10.1080/23737867.2017.1413432.
  • Cohen, J. E. 1978. Food Webs and Niche Space. Princeton, NJ: Princeton University Press.
  • Cohen, J. E., F. Briand, and C. M. Newman. 2012. Community Food Webs: Data and Theory. New York, NY: Springer Science and Business Media.
  • Courant, R. and H. Robbins. 1941, Six editions. What is Mathematics? An Elementary Approach to Ideas and Methods. London: Oxford University Press. page 240. (Revised edition: Courant, Richard, Herbert Robbins, and Ian Stewart. (1996). What is Mathematics?: an elementary approach to ideas and methods. Oxford University Press: USA).
  • Cozzens, M. 2015. Food webs and graphs. In R. Robeva (Ed.), Algebraic and Discrete Mathematical Methods for Modern Biology, pp. 29–49. New York, NY: Elsevier.
  • Crooks, G. E., G. Hon, J. M. Chandonia, and S. E. Brenner. 2004. Weblogo: A sequence logo generator. Genome Research. 14: 1188–1190.
  • Dahlquist, K. D., M. L. Aikens, J. T. Dauer, S. S. Donovan, C. D. Eaton, H. C. Highlander, K. P. Jenkins, J. R. Jungck, M. D. LaMar, G. Ledder and R.L. Mayes. 2017. An invitation to modeling: building a community with shared explicit practices. PeerJ Preprints 5: e3215v1.
  • Daud, M. and A. Aslah. 2017. An improved mathematical model of Galton board with velocity-dependent restitution. Journal of Computational and Nonlinear Dynamics. 12(6): 3.
  • Donovan, S. 2005. Tree thinking and reasoning about change over deep time. In J. Cracraft and R. W. Bybee (Eds.), Evolutionary Science and Society: Educating a New Generation, pp. 87–90. Colorado Springs, CO: BSCS.
  • Dreyfus, A., B. Feinstein, and J. Talman. 1997. The electronic spreadsheet and cognitive skills in inquiry oriented biology. In D. Passey and B. Sammways (Eds.), Information Technology: Supporting Change Through Teacher Education, pp. 278–284. London, UK: Chapman and Hall.
  • Drummond, A. J. and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology. 7(1): 1–8.
  • Eaton, C. D., H. C. Highlander, K. D. Dahlquist, M. Drew LaMar, G. Ledder, and R. C. Schugart. 2019. A “rule-of-five” framework for models and modeling to unify mathematicians and biologists and improve student learning. PRIMUS. 29(8): 799–829.
  • Ekici, C. and C. Plyley. 2019. Inquiry-Based modeling of population dynamics with logistic differential and difference equations. PRIMUS. 29(6): 1–18. (Their students used EXCEL for a finite model.).
  • Ekici, C., C. Plyley, C. Alagoz, R. Gordon, and N. Santana. 2018. Integrated development and assessment of mathematical modeling practices for Culturally Responsive STEM education: Lionfish case study. The Eurasia Proceedings of Educational & Social Sciences. 9: 1–10.
  • El-Hajj, A. and K. Y. Kabalan. 1991. A spreadsheet simulation of logic networks. IEEE Transactions on Education. 34(1): 43–46. (This method may be used to simulate combinational, sequential, synchronous and asynchronous networks).
  • Espigule, B. 2019 checked. Fractal Trees Project. http://pille.iwr.uniheidelberg.de/~fractaltree01/.
  • Fisher, L. 2008. Rock, Paper, Scissors: Game Theory in Everyday Life. New York: Basic Books.
  • Fitch, W. M. and E. Margoliash. 1967. Construction of phylogenetic trees. Science. 155: 279–284.
  • Friedler, Y. and H. Greensfeld. 1994. Integrating electronic spreadsheets as part of the biology curriculum – A model for inservice teacher education. Journal of Computers in Mathematics and Science Teaching. 13(4): 415–432.
  • Frongillo, R., E. Lock, and D. Brown. 2009. Symmetric fractal trees in three dimensions. Chaos, Solitons, & Fractals. 32(2): 284–295.
  • Fulkerson, D. R. and O. A. Gross. 1965. Incidence matrices and interval graphs. Pacific Journal of Mathematics. 15(3): 835–855.
  • Gale, D. and L. S. Shapley. 1962. College admissions and the stability of marriage. The American Mathematical Monthly. 69(1): 9–15.
  • Gammack, D. 2015. Using NetLogo as a tool to encourage scientific thinking across disciplines. Journal of Teaching and Learning with Technology. 4: 1. June 2015, pp. 22–39.
  • Gammack, D., E. Schaefer, and H. Gaff. 2013. Global dynamics emerging fromlocal interactions: Agent-based modeling for the life sciences. In R. Robeva (Ed.), Mathematical Concepts and Methods in Modern Biology: Using Modern Discrete Models, pp. 105–141. Boston, MA: Academic Press.
  • Ganter, S. L. and W. E. Haver. 2012. CRAFTY tools for revitalizing college algebra. MAA Focus. 32(3): 6–7.
  • Gerhardt, M., H. Schuster, and J. J. Tyson. 1990. A cellular automaton model of excitable media: III. Fitting the Belousov-Zhabotinskii reaction. Physica D: Nonlinear Phenomena. 46(3): 416–426.
  • Grace, M. and M.-T. Hütt. 2015. Regulation of spatiotemporal patterns by biological variability: general principles and applications to Dictyostelium discoideum. PLoS Computational Biology. 11(11): e1004367.
  • Griffiths, A. K. and B. A. Grant. 1985. High school students’ understanding of food webs: Identification of a learning hierarchy and related misconceptions. Journal of Research in Science Teaching. 22(5): 421–436.
  • Hall, B. M., C.-X. Ma, P. Liang, and K. K. Singh. 2009. FALCOR: fluctuation AnaLysis CalculatOR: A web tool for the determination of mutation rate using Luria–Delbrück fluctuation analysis. Bioinformatics (Oxford, England). 25(12): 1564–1565.
  • Hamming, R. W. 1984. Calculus and discrete mathematics. The College Mathematics Journal. 15(5): 388.
  • Hartman, C., M. J. Heule, K. Kwekkeboom, and A. Noels. 2013. Symmetry in Gardens of Eden. The Electronic Journal of Combinatorics. 20(3), 1- [They assert that “free will can never be proven or disproven”].
  • Head, B., R. Grider, and U. Wilensky. 2017. NetLogo Rock Paper Scissors model. http://ccl.northwestern.edu/netlogo/models/RockPaperScissors. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
  • Heitz, J., M. Wolansky, and B. Adamczyk. 2012. Using Classical Genetics Simulator (CGS) to teach students the basics of genetic research. Proceedings of the Association for Biology Laboratory Education. 33: 85–94.
  • Hidayat, E. W., I. K. G. D. Putra, I. A. D. Giriantari, and M. Sudarma. 2019. Visualization of a two-dimensional tree modeling using fractal based on L-system. IOP Conference Series: Materials Science and Engineering. 550(1): 012027. IOP Publishing,.
  • Hong, F. T. 2003. Towards physical dynamic tolerance: an approach to resolve the conflict between free will and physical determinism. Biosystems. 68(2–3): 85–105.
  • Hornbach, D. 1993. Biometrics. BioQUEST Library (I–III: ePress of the University of Maryland; IV–VI: Academic Press; VII ff: (https://bioquest.org/BQLibrary/library_details.php?product_id=166#)).
  • Howard, P., A. O'Hanlon, and D. Brown. 2004. Path length and height in asymmetric binary branching trees. Missouri Journal of Mathematical Sciences. 16(2): 86–103.
  • Huelsenbeck, J. P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics (Oxford, England). 17: 754–755.
  • Ito, K. and Y.-P. Gunji. 1992. Self-organization toward criticality in the game of life. BioSystems. 26(3): 135–138.
  • Jones, T. C. and T. F. Laughlin. 2009. Learning to measure biodiversity: two agent-based models simulate sampling methods and provide data for calculating diversity indices. The American Biology Teacher. 71: 406–410.
  • Jones, T. C. (T. J.), T. Laughlin, H. Miller, and B. Van Nes. 2019. Virtual Ecology Lab. http://faculty.etsu.edu/jonestc/Virtualecology.htm; .
  • Jungck, J. R. 2012. “If Life Is Analog, Why Are We Being So Discrete?: Middle-Out Modeling. In Rubem Mondani, ed., BIOMAT 2011, World Scientific, pp. 371–395. http://www.worldscientific.com/doi/abs/ArtFormshttps://doi.org/10.1142/9789814397711_0025.
  • Jungck, J. R. 2012. Mathematics make microbes beautiful, beneficial, and bountiful. Advances in Applied Microbiology. 80: 37–80.
  • Jungck, J. R. 2012. Incorporating quantitative reasoning in common core courses: mathematics for The Ghost Map. Numeracy: Advancing Education in Quantitative Literacy. 5, 1 Article 7. http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1097&context=numeracy.
  • Jungck, J. R. 2013. Genesis of what Is life?: A Paradigm shift in Genetics history. CBE Life Science Education. 9: 201–211. (Fall). Reprinted in “Highlights of 2013” hardcopy printed issue: pages 31-32.
  • Jungck, J. R. and J. N. Calley. 1986. Genetics: Strategic Simulations in Mendelian Genetics. Part A: Elementary Genetics; Part B: Intermediate Genetics: Diskette 1: Automsal Linkage, Sex Linkage, & Multiple Alleles, Diskette 2: Pleiotropy, Gene Interaction, Lethality & Penetrance, Diskette 3: Multifactorial Inheritance; Part C: Genetics Construction Kit. Five Apple Computer Disks and Associated Manual. Wentworth, New Hampshire: COMPress, Inc. Later distributed by QUEUE: Bridgeport, CT.
  • Jungck, J. R. and J. Spangenberg. 2005. ESS: Evolutionary Stable Strategies Game Theory Module. A module of the Biological ESTEEM Collection, published by the BioQUEST Curriculum Consortium. http://bioquest.org/esteem/esteem_details.php?product_id=262
  • Jungck, J. R., G. Dick, and A. G. Dick. 1982. Computer- assisted sequencing, interval graphs and molecular evolution. BioSystems. 15(3): 259–273.
  • Jungck, J. R., H. Gaff, and A. E. Weisstein. 2010. Mathematical manipulative models: In defense of beanbag biology. CBE—Life Sciences Education. 9: 201–211.
  • Jungck, J. R. and J. Manon. 2019. Brave spaces: Augmenting Interdisciplinary STEM education by using quantitative data explorations to engage Conversations on Equity and social justice. Numeracy: Advancing Education in Quantitative Literacy. 12(1): Article 4. 36. https://scholarcommons.usf.edu/numeracy/vol12/iss1/art4/.
  • Jungck, J. R. and R. Roy. 2014. 3P's ∪ MMM in Finite Mathematics: A Union of the BioQUEST Curriculum Consortium's Problem Posing, Problem Solving, Peer Review/Publication Pedagogy with the Modified Moore Method. Proceedings of the Symposium on BEER, 2014.
  • Jungck, J. R. and V. Streif. 1986. Deletion mapping of genetic “fine structure”: Supplementing ad hoc problem solving approaches with algorithms and heuristics. Bioscene: Journal of College Biology Teaching. 12(2): 13–27.
  • Jungck, J. R., V. Streif, S. Everse, and P. Jungck. 2004. “javaBenzer.” http://bioquest.org/ESTEEM.
  • Jungck, J. R., V. Streif, and A. Telerski. 1995. Complex Food Webs Maintain Strong One-Dimensional Connectedness: Software for Visualizing Interval Graph Complexity. Abstracts, International Meeting, Society for Mathematical Biology, Oaxtepec, Morelos, Mexico, pages 53–54.
  • Jungck, J. R., J. Galovich, and J. Reistetter. 2004. BioBayes. BioQUEST ESTEEM Collection. http://bioquest.org/esteem/esteem_details.php?product_id=422#.
  • Jungck, J. R. and R. Viswanathan. 2015. Graph theory for systems biology: interval graphs, Motifs, and pattern Recognition. In R. Robeva (Ed.), Algebraic and Discrete Mathematical Methods for Modern Biology, pp. 1–27. Chennai: Elsevier. plus electronic supplement.
  • Jungck, J. R. and A. E. Weisstein. 2013. Mathematics and evolutionary biology make bioinformatics education comprehensible. Briefings in Bioinformatics. 14(5): 599–609. doi:https://doi.org/10.1093/bib/bbt046.
  • Jungck, P., R. Duncan, and D. Mulcahy. 2011. Packet C Programming. New York: Apress of Springer Science + Business Media.
  • Just, W., H. Callender, M. D. LaMar, and N. Toporikova. 2015. Transmission of infectious diseases: data, models, and simulations. In R. Robeva (Ed.), Algebraic and Discrete Mathematical Methods for Modern Biology, pp. 193–215. New York, NY: Academic Press.
  • Just, W., H. L. Callender, and D. M. Lamar. 2015. “Exploring transmission of infectious diseases on networks with NetLogo.” In: https://www.qubeshub.org/IONTW, https://qubeshub.org/resources/365/download/ModelsQ.pdf, and http://www.ohiouniversityfaculty.com/just/IONTW/PosterIONTW.pdf.
  • Just, W. and H. C. Highlander. 2017. Vaccination strategies for small worlds. In A. Wootton, V. Peterson, and C. Lee (Eds), A Primer for Undergraduate Research: From Groups and Tiles to Frames and Vaccines, pp. 223–264. Cham, Switzerland: Birkhäuser.
  • Karperien, A. L. and H. F. Jelinek. 2016. Box-Counting fractal analysis: A Primer for the Clinician. In D. Ieva A (Ed.), The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. New York, NY: Springer. doi:https://doi.org/10.1007/978-1-4939-3995-4_2.
  • Kehle, P. 2015. Drawing lines: spatial arrangements of biological phenomena. In F. Roberts and M. Cozzens (Eds.), BioMath, pp. T1–T129. Boston, MA: CoMap. (Teachers Edition). (https://www.comap.com/undergraduate/projects/biomath/PDF/Drawing_Lines_SE.pdf).
  • Kemeny, J. G. 1959. Mathematics without numbers. Daedalus. 88(4): 577–591.
  • Kemeny, J. G., J. Laurie Snell, and G. L. Thompson. 1974. Introduction to Finite Mathematics. Saddle River, NJ: Prentice-Hall, Inc.
  • Khiripet, N., W. Khantuwan, and J. R. Jungck. 2012. Ka-me: a Voronoi image analyzer. Bioinformatics (oxford, England). 28(13): 1802–1804.
  • Khiripet, N., R. Viruchpintu, J. Maneewattanapluk, J. Spangenberg, and J. R. Jungck. 2010. Morphospace: measurement, modeling, mathematics, and meaning. Mathematical Modelling of Natural Phenomena. 6(2): 54–81. https://eudml.org/doc/197624.
  • Ko, R. L. and C. P. Bean. 1991. A simple experiment that demonstrates fractal behavior. The Physics Teacher. 29(2): 78–79.
  • Koirala, P. 2018. Food webs, competition graphs, and a 60-year old unsolved problem. In E. W. Hart and J. Sandefur (Eds), Teaching and Learning Discrete Mathematics Worldwide: Curriculum and Research, pp. 165–181. Cham, Switzerland: Springer.
  • Kozlov, V. V. and M. Y. Mitrofanova. 2003. Galton board. Regular and Chaotic Dynamics. 8(4): 431–439.
  • Krashniak, A. and E. Lamm. 2017. Was regression to the mean really the solution to Darwin’s problem with heredity?: Essay Review of Stigler, Stephen M. 2016. The Seven Pillars of Statistical Wisdom. Cambridge, Massachusetts: Harvard University Press. Philica 32: 749–758.
  • Langton, C. G. 1984. Self-reproduction in cellular automata. Physica D: Nonlinear Phenomena. 10(1–2): 135–144.
  • Lesser, L. M. 2007. Critical values and transforming data: teaching statistics with social justice. Journal of Statistics Education. 15(1): 21.
  • Levy, S. and U. Wilensky. 2008. Inventing a “Mid level” to make ends meet: reasoning between the levels of complexity. Cognition and Instruction. 26: 1–47.
  • Malley, C. (lead developer), A. McGarry (lead designer), W. Adams, M. Hoffman, O. Nix, J. Olson, A. Paul, K. Perkins, N. Podolefsky, and M. Lai (graphic arts). 2012, 2020. PheT Natural Selection Module. https://phet.colorado.edu/en/simulation/natural-selection.
  • Maxim, B. R. and R. F. Verhey. 1991. Using spreadsheets to introduce recursion and difference equations in high school mathematics. In M. J. Kenney and C. R. Hirsch (Eds), Discrete Mathematics Across the Curriculum, K-12, pp. 158–165. Reston, VA: National Council of Teachers of Mathematics, Inc.
  • McGuire, M. 1991. An Eye for Fractals: A Graphic/Photographic Essay. Reading, MA: Addison-Wesley Longman Publishing Co., Inc.
  • Meinhardt, H. 2009. The Algorithmic Beauty of Seashells. Berlin, Germany: Springer Science and Business Media.
  • Montgomery, R. J. 2016. Kidney paired donation: Optimal and equitable matchings in bipartite graphs. Rose Hulman Undergraduate Mathematics Journal. 17(1): 158–179.
  • Morris, C. C. and R. M. Stark. 2015. Finite Mathematics: Models and Applications. Hoboken, NJ: John Wiley & Sons.
  • Neal, D. 2018. Simulations in population biology: htttp://publications.usask.ca/population/spreadsheets.htm.] {Accompany his textbook: Introduction to Population Biology, 2nd ed., Cambridge: Cambridge University Press.
  • Norton, H. W. III. 1937. General formulae for homozygosis. Iowa Academy of Science. XLIV: 139–143.
  • Nowak, M. 2006. Five rules for social cooperation. Science. 314: 1560–1563.
  • Nowak, M. and R. Highfield. 2011. Super Cooperators: Altruism, Evolution, and Why We Need Each Other to Succeed. New York: Free Press of Simon and Schuster.
  • Ohtsuki, H., C. Hauert, E. Lieberman, and M. A. Nowak. 2006. A simple rule for the evolution of cooperation on graphs and social networks. Nature. 441(7092): 502–505.
  • Peitgen, H.-O., H. Jürgens, and D. Saupe. 2013. Fractals for the Classroom: Part one Introduction to Fractals and Chaos. Berlin, Germany: Springer Science & Business Media.
  • Petropoulou, E. N. 2010. A discrete equivalent of the logistic equation. Advances in Difference Equations. 2010(1): 457073. (15 pages).
  • Porkess, R. and S. Dudzic. 2013. A World Full of Data. Statistics Opportunities Across A Level Subjects. London: Royal Statistical Society and the Institute and Faculty of Actuaries.
  • Prusinkiewicz, P. and A. Lindenmayer. 2012. The Algorithmic Beauty of Plants. Berlin, Germany: Springer Science & Business Media.
  • Price, F. 1993. Data Collection and Organization. BioQUEST Library (I-III: ePress of the University of Maryland; IV-VI: Academic Press; VII ff: https://bioquest.org/BQLibrary/library_details.php?product_id=167#].
  • Radakovic, N. and D. McDougall. 2012. Using dynamic geometry software for teaching conditional probability with area-proportional Venn diagrams. International Journal of of Mathematical Education in Science and Technology. 43: 7.
  • Ralston, A. 1981. Computer science, mathematics and the undergraduate Curricula in both. Am. Math. Monthly. 88: 472–485.
  • Ralston, A. 1986. Views: discrete mathematics: The new mathematics of science: The computer revolution has made discrete mathematics as indispensable as the calculus to science and technology. American Scientist. 74(6): 611–618.
  • Ralston, A. 1991. Calculators for teaching and testing mathematics: A mathematician's view. College Board Review. 160: 18–21. 26.
  • Ralston, A. 1992. The impact of computers and computer science on the mathematics Curriculum. In B. Cornu and A. Ralston (Eds.), The Influence of Computers and Informatics on Mathematics and Its Teaching, pp. 19–24. Paris, (France): United Nations Educational, Scientific, and Cultural Organization. Div. of Science, Technical and Environmental Education.REPORT NOED-92/WS/17.
  • Ralston, A. and G. S. Young, eds. 1983. The Future of College Mathematics. New York: Springer-Verlag.
  • Resnick, M. 1992. Beyond the Centralized Mindset–Explorations in Massively Parallel Microworlds. PhD dissertation, Cambridge, MA: Massachusetts Institute of Technology.
  • Resnick, M. 1993. Learning about life. Artificial Life. 1(1–2): 229–241.
  • Resnick, M. 1995. New paradigms for computing, new paradigms for thinking. In L. D. Edwards (Ed.), Computers and Exploratory Learning, pp. 31–43. Berlin, Germany: Springer.
  • Resnick, M. 1996. Beyond the centralized mindset. The Journal of the Learning Sciences. 5(1): 1–22.
  • Resnick, M. 1999. Decentralized modeling and decentralized thinking. In W. Feurzeig and N. Roberts (Eds), Modeling and Simulation in Science and Mathematics Education, pp. 114–137. New York, NY: Springer.
  • Resnick, M. 1999. Turtless, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds. MIT Press. Cambridge: Mass. and London.
  • Robertson, C. J. 2011. FrakOut!: an application to explore the fractal dimension of shapes. https://code.google.com/archive/p/frakout]. Both Windows and Mac OS downloads are available as well as a tutorial manual.
  • Robeva, R. and R. Laubenbacher. 2009. Mathematical biology education: beyond calculus. Science. 325(5940): 542–543.
  • Ronquist, F., M. Teslenko, P. Van Der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck. 2012. Mrbayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology. 61(3): 539–542.
  • Rosche, W. A. and P. L. Foster. 2000. Determining mutation rates in bacterial populations. Methods. 20(1): 4–17.
  • Rossman, A. J. and T. H. Short. 1995. Conditional probability and education reform: Are they compatible? Journal of Statistics Education. 3(2): 9.
  • Roth, A. E., T. Sönmez, and M. Utku Ünver. 2004. Kidney exchange. The Quarterly Journal of Economics. 119(2): 457–488.
  • Rueden, C. T., J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri. 2017. Imagej2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 18(1): 529.
  • Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 4(4): 406–425.
  • Schelling, T. 1978. Micromotives and Macrobehavior. London, NY: W. W. Norton.
  • Schmickl, T. (Original date not given). StarLogo model of reaction-diffusion. http://zool33.uni-graz.at/schmickl/Self-organization/Pattern_formation/Reaction-diffusion/reaction-diffusion.html] Department for Zoology, Karl-Franzens-University Graz, Austria. (See Karsai I., Schmickl T., Kampis G. (2020) Understanding Ecosystem Stability and Resilience Through Mathematical Modeling. In: Resilience and Stability of Ecological and Social Systems. Springer, Cham. doi:https://doi.org/10.1007/978-3-030-54560-4_1].
  • Schneider, T. D. and R. M. Stephens. 1990. Sequence logos: A new way to display consensus sequences. Nucleic Acids Research. 18: 6097–6100.
  • Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH image to ImageJ: 25 years of image analysis. Nature Methods. 9(7): 671.
  • Sen, S. I. and A. M. Day. 2005. Modelling trees and their interaction with the environment: A survey. Computers & Graphics. 29(5): 805–817.
  • Shaw, G. 1998. Spreadsheets in molecular biology. In G. Filby (Ed.), Spreadsheets in Science and Engineering, pp. 203–228. New York, NY: Springer-Verlag.
  • Seibold, C. and H. L. Callender. 2016. Modeling epidemics on a regular tree graph. Letters in Biomathematics. 3(1): 59–74.
  • Shkurba, V. V. 1965. Mathematical processing of a class of biochemical experiments. Cybernetics. 1(1): 63–69.
  • Sinex, S. A. and B. A. Gage. 2006. Using Excel for Handling, Graphing, and Analyzing Scientific Data: A Resource for Science and Mathematics Students. (2019 download): http://academic.pgcc.edu/psc/Excel_booklet.pdf.
  • Slipper, M. 1998. Fifty years of research on self-replication: An overview. Artificial Life. 4: 237–257.
  • Soderberg, P., J. Stewart, J. N. Calley, and J. R. Jungck. 1994. Genetics construction kit: A tool for open-ended investigation in transmission genetics. Journal of Computing In Higher Education. 5(2): 67–84.
  • Sokal, R. R. and C. D. Michener. 1958. A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin. 38: 1409–1438.
  • Spreng, J. D. 2017. How the leopard got its spots. Eukaryon. 13: 19–20. [Biolog://www.lakeforest.edu/live/files/3728-28-29spreng.pdf].
  • Stansfield, W. D. and M. A. Carlton. 2004. Bayesian statistics for biological data: pedigree analysis. The American Biology Teacher. 66: 177–182.
  • Stansfield, W. D. and M. A. Carlton. 2014. Biostatistics in the popular press. The American Biology Teacher. 76(7): 429–430.
  • Stanley, H. E. 2002. Exploring Patterns in Nature: Computer Simulabs and Hands on Activities. New York, NY: Springer.
  • Stigler, S. M. 2016. Seven Pillars of Statistical Wisdom. Cambridge, MA: Harvard University Press.
  • Stohl Drier [Lee], H. 2001. Teaching and learning mathematics with interactive spreadsheets. School Science and Mathematics. 101(4): 170–179.
  • Stohl, H. and J. E. Tarr. 2002. Developing notions of inference using probability simulation tools. Journal of Mathematics Education. 21: 319–337.
  • Stohl Lee, H., R. L. Angotti, and J. E. Tarr. 2010. Making comparisons between observed data and expected outcomes: students’ informal hypothesis testing with probability simulation tools. Science Education Research Journal. 9(1): 68–96.
  • Stonedahl, F. and U. Wilensky. 2008. NetLogo Virus on a Network model. http://ccl.northwestern.edu/netlogo/models/VirusonaNetwork. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
  • Stultz, L. 2000. How to Excel in Finite Math: Spredsheet Mathematics – A Supplement for Finite Mathematics. Boston, MA: Pearson Custom Publishing.
  • Taylor, R. and T. Timberlake. 2007. Tearing plastic: A laboratory exercise on fractals and hyperbolic geometry. PRIMUS. 17(4): 316–324.
  • Thompson, D. W. 1917. On Growth and Form. Cambridge: Cambridge University Press.
  • Thompson, K. V., T. J. Cooke, W. F. Fagan, D. Gulick, D. Levy, K. C. Nelson, E. F. Redish, R. F. Smith, and J. Presson. 2013. Infusing quantitative approaches throughout the biological sciences curriculum. International Journal of Mathematical Education in Science and Technology. 44(6): 817–833.
  • Tucker, A. 1972. A structure theorem for the consecutive 1's property. Journal of Combinatorial Theory, Series B. 12(2): 153–162.
  • Turnbull, B.. 2012. Longest kidney transplant chain in history had a Canadian connection. Toronto Star. https://www.thestar.com/life/health_wellness/2012/02/24/longest_kidney_transplant_chain_in_history_had_a_canadian_connection.html.
  • Turnbull, L., M.-T. Hütt, A. Ioannides, and A. J. Parsons. 2018. Connectivity and complex systems: learning from a multi-disciplinary perspective. Applied Network Science. 3(11): 49.
  • Viswanathan, R., S. Liang, Y. Yang, and J. R. Jungck. 2016. “BIOGRAPHER: Visualization of Graph Theoretical Patterns, Measurements, and Analysis In Mathematical Biology.” In BIOMAT 2015: International Symposium on Mathematical and Computational Biology, pp. 118–140.
  • Weisstein, A. E. 2011. Building mathematical models and biological insight in an introductory biology course. Mathematical Modelling of Natural Phenomena. 6(6): 198–214.
  • Weisstein, A. E. 2012. Deme 2.0. A module of the Biological ESTEEM Collection, published by the BioQUEST Curriculum Consortium. http://bioquest.org/esteem/esteem_details.php?product_id=193.
  • Wilensky, U. 2001. NetLogo Tree Simple model. http://ccl.northwestern.edu/netlogo/models/TreeSimple. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
  • Wilensky, U. 2003. NetLogo B-Z Reaction model. http://ccl.northwestern.edu/netlogo/models/B-ZReaction. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
  • Wilensky, U. 2003. NetLogo CA Continuous model. http://ccl.northwestern.edu/netlogo/models/CAContinuous. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
  • Wilensky, U. 2005. NetLogo DLA Alternate Linear model. http://ccl.northwestern.edu/netlogo/models/DLAAlternateLinear. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
  • Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
  • Wilensky, U. and K. Reisman. 2006. Thinking like a wolf, a sheep or a firefly: learning biology through constructing and testing computational theories – an embodied modeling approach. Cognition & Instruction. 24(2): 171–209.
  • Wirth, E., G. Szabó, and A. Czinkóczky. 2016. Measure of landscape heterogeneity by agent-based methodology, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. III-8, 145–151. doi:https://doi.org/10.5194/isprs-annals-III-8-145-2016, 2016.
  • Wolfram, S. 2018. Are all fish the same shape if you stretch them? The Victorian Tale of On Growth and Form. Mathematical Intelligencer. 40(4): 39–61.
  • Wolfram, S. 2002. A New Kind of Science. Champaign, IL: Wolfram Media Inc.
  • Viswanathan, R. 2006. Biographer and WDisplay: Excel modules for data visualization. BioQUEST_Notes. 15(1): 6–7.
  • Yunes, N. D. 2011. The decentralized mindset. https://nourdiab.wordpress.com/2011/10/03/the-decentralized-mindset/.
  • Zheng, Q. 2010. The Luria–Delbrück distribution: early statistical thinking about evolution. Chance. 23: 15–18.
  • Zheng, Q. 2017. Rsalvador: An R package for the fluctuation experiment. G3: Genes, Genomes, Genetics. 7(12): 3849–3856.
  • Zhu, J., K. Alderfer, B. Smith, B. Char, and S. Ontañón. 2020. Understanding Learners’ Problem-Solving Strategies in Concurrent and Parallel Programming: A Game-Based Approach. arXiv preprint arXiv:2005.04789.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.