212
Views
5
CrossRef citations to date
0
Altmetric
Articles

Variation in carbon concentration and wood density for five most commonly grown native tree species in central highlands of Ethiopia: The case of Chilimo dry Afromontane forest

ORCID Icon, , , &

References

  • Allen, S. E., Grimshaw, H. M., & Rowland, A. P. (1986). Chemical analysis. In P. D. Moore & Chapman (Eds.), Method in plant ecology (pp. 285–344). America: Blackwell Scientific publications.
  • Amorim, L. G. (1991). Variaczo de densídado basica no sentido radial em modeiras tropicaís de Amazónia. Manaus: Ralatorío period abril 19-marzo 19, iniciao cientifica/conselho Nacional de Desenvolvimiento cientifico e Tecnologico instituto National de pesquisas de Amazonía a (NPA).
  • Azene, B., Ann, B., & Bo, T. (1993). Use full trees and shrubs for Ethiopia. Regional Soil conservation unit (RSCU), Swedish International Development Authority, RELMA in ICRAF Project.
  • Baccini, A., Laporte, N., Goetz, S. J., Sun, M., & Dong, H. (2008). The first map of Africa’s above ground biomass derived from satellite imagery. Environmental Research Letters, 3(045011), 9. doi:10.1088/1748-9326/3/4/045011
  • Barahana, G. L. (2005). Varación de la composición química en albura, duramen y altura de modera culpable de Eucalyptus globulus proveniente de monte alto y monte bajo ( MSc Thesis). Departamento de la ingniería de la Madera, Austral University of Chile, Valdivia Chile.
  • Basuki, T. M., van Laake, P. E., Skidmore, A. E., & Hussin, Y. A. (2009). Allometric equations for estimating the above ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257, 1684 ˗ 1694. doi:10.1016/j.foreco.2009.01.027
  • Beck, C. (2010). An introduction to plant structure and development. Cambridge: Cambridge University Press.
  • Bekele, M. (2003). Forest property rights, the role of the state and institutional exigency: The Ethiopian experience. Doctoral Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden.
  • Ben-Dar, E., & Banin, A. (1989). Determination of organic matter in arid-zone soils using a simple loss-on-ignition method. Communication in Soil Science and Plant Analysis, 20(15–16). doi:10.1080/100103622890936175
  • Brown, S. (1997). A Primer. FAO Forestry Paper 134. Food and Agriculture Organization of the United Nations (FAO). Rome, Italy, 55 pp.
  • Brown, S. (2002). Measuring carbon in the forest, current status, and future challenges. Environmental Pollution, 116, 363˗372. doi:10.1016/S0269˗7491(01)00212˗3
  • Brown, S., Gillespie, A. J. R., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35, 881–902.
  • Castaño - Santamaria, J., & Bravo, F. (2012). Variation in carbon concentration and basic density along stems of sessile oak (Quercus petraea (Matt. Leibl.) and Pyrenean oak (Quercus pyrenaica willd.) in the Cantabrian range (NW Spain). Annals of Forest Science. doi:10.1007/ls13595.012-0183-6
  • Charan, B. L., & Rasal, G. B. (2012). Carbon sequestration potential of young Annona reticulate and Annona squamosal from University campus of Aurangabao. International Journal of Physical and Social Sciences, 2(3 ISSN), 2249–5894.
  • Chaturvedi, R. K., Raghuvanshi, A. G., & Singh, I. S. (2011). Carbon density and accumulation in woody species of tropical dry forest in India. Forest Ecology and Management, 262, 1576˗1588. doi:10.1016/j.foreco.2011.07.006
  • Chave, J. (2006). Measuring wood density for tropical forest trees of field manual Lab. Evolution rt Diversité Biologique Université Paul Sabatier 3100 Toulouse France.
  • Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lau, S., & Perez, R. (2004). Error propagation and scaling for tropical forest biomass estimates - Philos. Transactions of the Royal Society\ London B, 359, 409420. doi:10.1098/rstb.2003.1425
  • Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. L., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351˗366. doi:10.1111/j.1461-0248.2009.01285.x
  • Chave, J., Rieâra, B., & Dubois, M. (2001). Estimation of biomass in a Neotropical Forest of French Guiana: Spatial and temporal variability. Journal of Tropical Ecology, 17, 79–96. doi:10.1017/S0266467401001055
  • Cole, T. G., & Ewel, J. J. (2006). Allometric equations for four valuable tropical tree species. Forest Ecology and Management, 229, 351˗360. doi:10.1016/j.foreco.2006.04.017
  • De Castro, F., Williamson, G. B., & de Jesus, R. M. (1993). Radial variation in wood specific gravity of Jonnesia princeps: The role of age and diameter. Biotropica, 25, 176–182. doi:10.2307/2389181
  • DeMacedo, C. S. M. (1991). Variacao longitudinal densidad básica da composicao quimica de madeiras esua avalíacao energetic - relatorío Final, April 1990-Marzo 1991.
  • Ducey, M. J., & Larson, B. C. (2010). Is there a correct stand density index? An alternative interpretation. Western Journal of Applied Forestry, 18, 179˗184.
  • Ducey, M. J., & Larson, B. C. (2017). Is there a correct stand density index? An alternative interpretation. Western Journal of Applied Forestry, 18, 179˗184.
  • E.M.A. (1988). National atlas of Ethiopia (pp. 76). Addis Ababa, Ethiopia: Ethiopian Mapping Authority.
  • Fayolle, A., Doucet, J. L., Gillet, J. F., Bourland, N., & Lejeune, P. (2013). Tree allometry in central Africa: Testing the validation of pantropical multi-species allometric equations for estimation biomass and carbon stock. Forest Ecology and Management, 304, 29˗37.
  • Fearnside, P. M. (1997). Wood density for estimating forest biomass in Brazilian Amazonía. Forest Ecology and Management, 90, 59–87. doi:10.1016/S0378-1127(96)03840-6
  • Feyissa, A., Soromessa, T., & Argaw, M. (2013). Forest carbon stocks and variations along altitudinal gradients in Egdu Forest: Implications of managing forests for climate change mitigation. Science, Technology and Arts Research Journal, 2(4), 40–46. doi:10.4314/star.v2i4.8
  • Gertner, B. L., & Meínzer, F. C. (2005). Structure-function relationships in sapwood water transport and storage. Vascular Transport Plants, 307–331.
  • Girma, A., Soromessa, S., & Bekele, T. (2014). Forest carbon stocks in woody plants of mount zequalla monastery and its variation along altitudinal gradient: Implication of managing forests for climate change mitigation. Science, Technology and Arts Research Journal, 3(2), 133–141. doi:10.4314/star.v3i2.17
  • Grabner, M., & Wimmer, R. (2006). Variation of different tree-ring parameters as present in complete Norway spruce stem. Dendrochronologia, 23, 111–120. doi:10.1016/j.dendro.2005.11.001
  • Henry, M., Besnard, A., Asante, W. A., Eshon, J., Adu - Bredus, S., Valentini, R., … Saint- André, L. (2012). Wood density, phytomass variations within and among trees, and allometric equations in a tropical rain forest of Africa. Forest Ecology and Management, 260, 1375 ˗ 1388.
  • Henry, M., Besnard, A., Asante, W. A., Eshon, J., Adu - Bredus, S., Valentini, R., … Saint-André, L. (2010). wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management, 260, 1375–1388. doi:10.1016/j.foreco.2010.07.040
  • Henry, M., Picard, N., Trotta, C., Manlay, R. J., Valetini, R., Bernoux, M., & Saint-André, L. (2011). Estimating tree biomass of Sub-Saharan African forests: A review of available allometric equations. Silva Fennica, 45(3B), 477˗569. doi:10.14214/sf.38
  • Herrero de Aza, C., Turrion, M. B., Pando, V., & Bravo, F. (2011). Carbon in heart wood, sapwood and bark along the stem profile in three Meditteranean Pinus species. Annals of Forest Sciences, 68, 1067–1076. doi:10.1007/51595-0122-4
  • Highuchi, N., & de Carralho, J. (1994). Fitomass e conteudo de carbon de especíes arboreass de Amazoníans doseminarío Emissad * sequéstro de CO2 Campanhia Vale de Rio Dote (pp. Pp.125–153). Brazil: Rio de Janeiro RJ.
  • Houghton, R. A., Lawrence, K. T., Hackler, J. L., & Brown, S. (2001). The spatial distribution of forest biomass in the Brazilian Amazon: A comparison of estimates. Global Change Biology, 7, 731–746. doi:10.1046/j.1365-2486.2001.00426.x
  • Ishida, A., Nakano, T., Yazaki, K., Matsuki, S., Koike, N., Lavenstein, D., … Yamashita, N. (2008). Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought tolerant angiosperms. Oecologia, 156, 193–202. doi:10.1007/s00442-008-0965-6
  • Jone, B. K., Biswas, S., Majumder, M., Roy, P. K., & Mazumdar, A. (2009). Comparative assessment of carbon sequestration rate and biomass carbon potential of four young Shorear busta and Albizzia lebbek. International Journal of Hydro-Climatic Engineering Assoc. Water and Enviro - Modelling, 4, 1–15.
  • Kangas, A., & Maltamo, M. (eds.). (2006). Forest inventory methodology and applications; managing forest ecosystems 10. Dordrecht, the Netherlands: Springer.
  • Kassa, H., Campbell, B., Sandwell, M., Kebede, M., Tesfaye, Y., Dessie, G., … Sandew, K. (2008). Building future sceneries and uncovering persisting challenges of participatory forest Management in Chilimo forest, Central Ethiopia. Journal of Environmental Economics and Management.
  • Kelbessa, E., & Soromossa, T. (2004). Biodiversity, ecological and regeneration studies in Bonga, Borana and Chilimo forests. Technical report prepared for Farm Africa - SoS - Sahel, Addis Ababa University, and Addis Ababa, Ethiopia.
  • Ketterings, Q. M., Coe, R., van Noordwijk, M., Ambagau, Y., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146, 199–209. doi:10.1016/S0378-1127(00)00460-6
  • King, D. A., Davies, S. J., Supardi, M. N. N., & Tan, S. (2005). Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Functional Ecology, 19, 445 ˗ 453. doi:10.1111/j.1365-2435.2005.00982.x
  • Köhl, M., Magnussen, S. S., & Marchetti, M. (2006). Sampling methods, remote sensing and GIS multi resource forest inventory. Germany: Springer - Verlag, Berlin Heidelberg.
  • Kollmann. (1959). Tecnología de la madera y sus aplicaciones. Tomo primero (pp. 375). Madrid: IFIE.
  • Lamprecht, H. (1989). Silvicultural in the tropics. In Tropical forest ecosystems and their tree species-possibilities and methods for their long - term utilization. Eschborn: Technical cooperation federal republic of Germany.
  • Litton, C. M., & Kauffman, J. B. (2008). Allometric models for predicting aboveground biomass in two widespread wood plants in Hawaii. Biotropica, 40, 313 ˗ 320. doi:10.1111/j.1744-7429.2007.00383.x
  • Luizáo, R. C. C., Luizáo, F. J., Paira, R. Q., Monteiro, T. F., Sousa, L. S., & Kruijt, B. (2004). Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Global Change Biology, 10, 592–600. doi:10.1111/j.1529-8817.2003.00757.x
  • Marvin, D. C., Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E., Sinca, F., & Tupayachi, R. (2014). Amazonian landscapes and the bias in field studies of forest structure and biomass. Proceedings of the National Academy of Sciences of the United States of America, 111(48). doi:10.1073/pnas.1412999111
  • Mate, R., Johansson, T., & Sitoe, A. (2014). Biomass equations for tropical forest tree species in Mozambique. Forests, 5(3), 535˗556. doi:10.3390/f5030535
  • McDonalo, S. S., Williamson, G. B., & Wiemann, M. L. (1995). Wood specific gravity and anatomy in Heliocapos appendiculatus (Tiliaceaea). American Journal of Botany, 82, 855–861. doi:10.1002/j.1537-2197.1995.tb15701.x
  • Meles, B. W., Kelbessa, E., & Soromessa, T. (2014). Forest carbon stocks in woody plants of arba minch ground water forest and its variations along environmental gradients. Science, Technology and Arts Research Journal, 3(2), 141–147. doi:10.4314/star.v3i2.18
  • Miah, M. D., Kaike, M., Shin, M. Y., & Akther, S. (2011). Forest biomass and bio energy production and the role of CDM in Bangladesh. New Forests, 42, 63 ˗ 84. doi:10.1007/s11056-010-9238-4
  • Mittermeier, R. A., Robles,, Gil, P., Hoffmann, M., et al. (2005). Hotspots revisited: Earth’s biologically richest and most threatened terrestrial ecoregions. Mexico: CEMEX.
  • Molina, P. X., Asner, G. P., Farjas Abadía, M., Ojeda Manrique, J. C., Sanchez Diez, L. A., & Valencia, R. (2016). Spatially-explicit testing of general aboveground carbon density estimation model in a western Amazonian forest using airborne LiDAR. Remote Sensing, 8(1). doi:10.3390/rs8010009
  • Negi, J. D. S., Manhas, R. K., & Chavhan, P. S. (2003). Carbon allocation in different components of some tree species of India. A new approach for carbon estimation. Current Science, 85(11), 1528–1531.
  • Ngomanda, A., Engone - Obiang, N. L., Lebamba, J., Moudounga - Mavouroulou, Q., Gomat, H., Mamkou, G. S., … Picard, N. (2014). Site specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central Africa forest? Forest Ecology and Management, 312, 1˗9. doi:10.1016/j.foreco.2013.10.029
  • Nogueira, E. M., Fearnside, P. M., Nelson, B. W., & Franca, M. B. (2007). Wood density in forests of Brazil’s arc of deforestation: Implications for biomass and flux of carbon from land-use change in Amazonia. Forest Ecology and Management, 248, 119–135. doi:10.1016/j.foreco.2007.04.047
  • Parolin, P., & Worbes, M. (2000). Wood density of trees in black water flood plains of Rio Jaú national park, Amazonia, Brazil. Acta Amazonica, 30(3), 441–448. doi:10.1590/1809-43922000303448
  • Patino, S., Lloyd, J., Baker, T. R., Quesada, C. A., Mercado, L. M., Schmerler, J., … Phillips, O. L. (2009). Branch xylem density variation across the Amazon Basin. Bio Geoscience, 6, 545–568.
  • Peltier, R., Njiti, C. F., Ntoupka, M., Manlay, R., Henry, M., & Morillon, V. (2007). Evaluation stock de carbone et de la productivité en bois d’un parc à Karités du Nord - Cameroun. Bois et Forêts des Tropiques, 294, 39 ˗ 50.
  • Perera, P. K. P., Amarasekera, H. S., & Weeawardena, N. D. R. (2012). Effect of growth rate on the wood specific gravity of three alternative timber species in Srilanka: Swietenia macrophylla, Khaya senegalensis, and Paulownia fortune. Journal of Forestry and Environment, 2(01), 26–35.
  • Pittermann, J., Sperry, J., Wheeler, J., Hacke, L. J., & Sikkema, E. (2006). Mechanical reinforcement of Tracheid compromises the hydraulic efficiency of conifer xylem plant. Cell & Environment, 29, 1618–1628. doi:10.1111/j.1365-3040.2006.01539.x
  • Poorter, L., Bongers, L., & Bongers, F. (2006). Architecture of 54 moist-forest tree species: Traits, trade-offs, and functional groups. Ecology, 87, 1289˗1301. doi:10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2
  • Prasada, O. P., Hussinb, Y. A., Weirb, M., Karnac, J. C., & Yogendra, K. (2016). Derivation of forest inventory parameters for carbon estimation using terrestrial LIDAR. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, 677–684. Retrieved from http://www.int-arch-photogramm–remote–sens–spatial–inf-sci.net/XLIB8/677/Q272016/isprs-archives-XLI-B8-677-2016.pdf .
  • Preece, N. D., Crowley, G. M., Lawes, M. J., & van Oesterle, P. (2012). Comparing above - ground biomass among forest types in the wet tropics: Small stems and plantation types matter in carbon accounting. Forest Ecology and Management, 264, 228 ˗ 237. doi:10.1016/j.foreco.2011.10.016
  • Sas Institute Inc. (2012). SAS/ETS®.9.2 User’s guide. Carry: Author.
  • Shumi, G. (2009). The structure and regeneration status of tree and shrub species of Chilimo forest-ecological sustainability indicators for participatory forest management (PFM) in Oromiya, Ethiopia’s Thesis, University of Dresden, Germany.
  • Sicard, C., Saint - André, L., Gelhaye, D., & Ranger, J. (2006). Effect of initial fertilization on biomass and nutrient content of Spruce and Douglas - fir plantations at the same site Trees. Struct.Func., 201, 229–246. doi:10.1007/s00468-005-0030-6
  • Slik, J. W. S. (2008). Estimating species-specific wood density from the genus average in Indonesia Trees. Journal of Tropical Ecology, 22, 481–482. doi:10.1017/S026646706003324
  • Soromessa, T., & Kelbessa, E. (2014). Interplay of regeneration, structure and use of some woody species in Chilimo forest, Central Ethiopia. Science, Technology and Arts Research (STAR) Journal, 3(1), 90˗100. doi:10.4314/star.v3i1.15
  • Tesfaye, A. M. (2015). Forest management options for carbon stock and soil rehabilitation in Chilimo dry afro-montane forest, Ethiopia. Ph.D. Thesis, INIA- Palencia, University of Valladolid, Palencia, Spain.
  • Tesfaye, M. A., Bravo-Oviedo, A., Bravo, F., & Ruiz – Peinado, R. (2016). Aboveground biomass equations for sustainable production of fuel wood in a native dry tropical afro-montane forest of Ethiopia. Annals of Forest Science, 1–13. doi:10.1007/s13595-015-0533-2
  • Teshome (2015). Chilimo dry Afromontane forest land map. Annual report, EEFRI, Addis Ababa.
  • Teshome, S., & Ensermu, K. (2013). Diversity and endemicity of Chilimo forest, central Ethiopia. Bioscience Diversity, 4(1) 01˗ 04 Jan 2013, 1 ˗ 4.
  • Thomas, C. S., & Martin, R. A. (2012). Carbon content of tree tissues. A synthesis. Forests, 3, 332–352. doi:10.3390/f3020332
  • van Gelder, H. A., Poorter, L., & Serck, F. J. (2006). Wood mechanics, allometry and life-history variation in a tropical rainforest tree community. New Phytologist, 171, 367–378. doi:10.1111/j.1469-8137.2006.01757.x
  • Vanninen, P., & Mäkelä, A. (2000). Needle and stem wood production in Scots pine (Pinus sylvestris) tree of different age, size and competitive status. Tree Physiology, 20, 527˗533.
  • Woodcock, D., & Shier, A. D. (2002). Wood specific gravity and its radial-variations the many ways to make a tree. Trees-Structure and Function, 16(6), 437–443. doi:10.1007/s00468-002-0173-7
  • Zhang, Q., Wang, C., Wang, X., & Quan, X. (2009). Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecology and Management, 258, 722–727. doi:10.1016/j.foreco.2009.05.009
  • Zobel, B. J., & van Buiijtenen, J. P. (1989). Wood variation its causes and control (pp. 354–358). Germany: Springer_Verlags Berlin.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.