454
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Contribution To Climate Change Of Forest Fires In Spain: Emissions And Loss Of Sequestration

ORCID Icon

References

  • Amiro, B. D., Todd, J. B., Wotton, B. M., Logan, K. A., Flannigan, M. D., Stocks, B. J., … Hirsch, K. G. (2001). Direct carbon emissions from Canadian forest fires, 1959–1999. Canadian Journal of Forest Research, 31(3), 512–525. doi:10.1139/x00-197
  • Anderson, H. E. (1982). Aids to determining fuel models for estimation fire behavior (General Technical Report INT–122). USDA, Forest Service, Washington, D.C., US (United States).
  • Andreae, M. O. (1991). Biomass burning: Its history, use, and distribution and its impact on environmental quality and global climate. In J. S. Levine (Ed.), Global biomass burning: Atmospheric, climatic, and biospheric implications (pp. 3–21). Cambridge, MA: MIT.
  • Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles, 15(4), 955–966. doi:10.1029/2000GB001382
  • Bachelet, D., Neilson, R. P., Hickler, T., Drapek, R. J., Lenihan, J. M., Sykes, M. T., … Thonicke, K. (2003). Simulating past and future dynamics of natural ecosystems in the United States. Global Biogeochemical Cycles, 17(2), 1045. doi:10.1029/2001GB001508
  • Baeza, M. J., De Luis, M., Raventós, J., & Escarre, A. (2002). Factors infuencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk. Journal of Environmental Management, 65, 199–208. doi:10.1006/jema.2002.0545
  • Barbosa, P. M., Stroppiana, D., Gregoire, J. M., & Pereira, J. M. C. (1999). An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned biomass, and atmospheric emissions. Global Biogeochemical Cycles, 13(4), 933–950. doi:10.1029/1999GB900042
  • Beck, P. S. A., Goetz, S. J., Mack, M. C., Alexander, H. D., Jin, Y., Randerson, J. T., & Loranty, M. M. (2011). The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Global Change Biology, 17, 2853–2866. doi:10.1111/j.1365-2486.2011.02412.x
  • Blujdea, V. N. B., Abad, R., Federici, S., & Grassi, G. (2016). The EU greenhouse gas inventory for the LULUCF sector: I. Overview and comparative analysis of methods used by EU member states. Carbon Management, 6(5–6, 247–259.
  • Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., … Pyne, S. J. (2009). Fire in the Earth system. Science, 324, 481–484. doi:10.1126/science.1163886
  • Buhk, C., Götzenberger, L., Wesche, K., Sánchez, P., & Hensen, I. (2006). Post–Fire regeneration in a Mediterranean pine forest with historically low fire frequency. Acta Oecologica, 30, 288–298. doi:10.1016/j.actao.2006.05.010
  • Calfapietra, C., Barbati, A., Perugini, L., Ferrari, B., Guidolotti, G., Quatrini, A., & Corona, P. (2015). Carbon mitigation potential of different forest ecosystems under climate change and various managements in Italy. Ecosystem Health and Sustainability, 1(8), 1–9. doi:10.1890/EHS15-0023
  • Calvo, L., Santalla, S., Marcos, E., Valbuena, L., Tárrega, R., & Luis, E. (2003). Regeneration after wildfire in communities dominated by Pinus pinaster, an obligate seeder, and in others dominated by Quercus pyrenaica, a typical resprouter. Forest Ecology and Management, 184, 209–223. doi:10.1016/S0378-1127(03)00207-X
  • Crutzen, P. J., & Andreae, M. O. (1990). Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250, 1669–1678. doi:10.1126/science.2255901
  • Cruz, M. G., Sullivan, A., Kidnie, S., Hurley, R., & Nichols, D. (2016). The effect of grass curing and fuel structure on fire behaviour – Final report (Report No EP 166414). Canberra, Australia: CSIRO Land and Water.
  • De Groot, W. J., Landry, R., Kurz, W. A., Anderson, K. R., Englefield, P., & Pritchard, J. (2007). Estimating direct carbon emissions from Canadian wildland fires. International Journal of Wildland Fire, 16, 593–606. doi:10.1071/WF06150
  • Dixon, R. K., & Krankina, O. N. (1993). Forest fires in Russia: Carbon dioxide emissions to the atmosphere. Canadian Journal of Forest Research, 23(4), 700–705. doi:10.1139/x93-091
  • Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., & Hayama, K. (2006). 2006 guidelines for national greenhouse gas inventories. Vol. 4. Agriculture, forestry and other land uses. Kanagawa, Japan: IGES, IPCC National Greenhouse Gas Inventories Programme.
  • Evtyugina, M., Calvo, A. I., Nunes, T., Alves, C., Fernandes, A. P., Tarelho, L., … Pio, C. (2013). VOC emissions of smouldering combustion from Mediterranean wildfires in central Portugal. Atmospheric Environment, 64, 339–348. doi:10.1016/j.atmosenv.2012.10.001
  • Galanter, M., Levy, H., & Carmichael, G. R. (2000). Impacts of biomass burning on tropospheric CO, NOx, and O3. Journal of Geophysical Research: Atmospheres, 105, 6633–6653. doi:10.1029/1999JD901113
  • Gillett, N. P., Weaver, A. J., Zwiers, F. W., & Flannigan, M. D. (2004). Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31, L18211. doi:10.1029/2004GL020876
  • González-De Vega, S., De Las Heras, J., & Moya, D. (2018). Post–Fire regeneration and diversity response to burn severity in Pinus halepensis Mill. Forests, 9, 299. doi:10.3390/f9060299
  • Goto, Y., & Suzuki, S. (2013). Estimates of carbon emissions from forest fires in Japan, 1979-2008. International Journal of Wildland Fire, 22(6), 721–729. doi:10.1071/WF12103
  • Hao, W. M., & Liu, M. H. (1994). Spatial and temporal distribution of tropical biomass burning. Global Biogeochemical Cycles, 8(4), 495–503. doi:10.1029/94GB02086
  • Hao, W. M., Liu, M. H., & Crutzen, P. J. (1990). Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fire in the tropics, based on FAO statistics for the period 1975-1980. In J. G. Goldammer (Ed.), Fire in the tropical biota (pp. 440–462). Berlin, Germany: Springer.
  • Hoelzemann, J. J., Schultz, M. G., Brasseur, G. P., & Granier, C. (2004). Global wildland fire emission model (GWEM): Evaluating the use of global area burnt satellite data. Journal of Geophysical Research: Atmospheres, 109, D14S04. doi:10.1029/2003JD003666
  • Ito, A., & Penner, J. E. (2004). Global estimates of biomass burning emissions based on satellite imagery for the year 2000. Journal of Geophysical Research: Atmospheres, 109(D14), 839–856. doi:10.1029/2003JD004423
  • Jin, Y., Randerson, J. T., Goetz, S. J., Beck, P. S. A., Loranty, M. M., & Goulden, M. L. (2012). The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests. Journal of Geophysical Research: Biogeosciences, 117, G01036. doi:10.1029/2011JG001886
  • Karavani, A., Boer, M. M., Baudena, M., Colinas, C., Díaz-Sierra, R., Pemán, J., … Resco, V. (2018). Fire–Induced deforestation in drought–Prone Mediterranean forests: Drivers and unknowns from leaves to communities. Ecological Monographs, 88(2), 141–169. doi:10.1002/ecm.1285
  • Kashian, D. M., Romme, W. H., Tinker, D. B., Turner, M. G., & Ryan, M. G. (2006). Carbon storage on coniferous landscapes with stand–Replacing fires. BioScience, 7, 598–606. doi:10.1641/0006-3568(2006)56[598:CSOLWS]2.0.CO;2
  • Kasischke, E. S., & Bruhwiler, L. P. (2002). Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. Journal of Geophysical Research: Atmospheres, 107, 8146. doi:10.1029/2001JD000461
  • Langmann, B., Duncan, B., Textor, C., Trenmann, J., & van der Werf, G. E. (2009). Vegetation fire emissions and their impact on air pollution and climate. Atmospheric Environment, 43, 107–116. doi:10.1016/j.atmosenv.2008.09.047
  • Loehman, R., Flatley, W., Holsinger, L., & Thode, A. (2018). Can land management buffer impacts of climate changes and altered fire regimes on ecosystems of the Southwestern United States? Forests, 9(4), 192. doi:10.3390/f9040192
  • Loudermilk, E. L., Scheller, R. M., Weisberg, P. J., & Kretchun, A. (2017). Bending the carbon curve: Fire management for carbon resilience under climate change. Landscape Ecology, 32(7), 1461–1472. doi:10.1007/s10980-016-0447-x
  • Lü, A., Tian, H., Liu, M., Liu, J., & Melillo, J. M. (2006). Spatial and temporal patterns of carbon emissions from forest fires in China from 1950 to 2000. Journal of Geophysical Research: Atmospheres, 111, D05313. doi:10.1029/2005JD006198
  • MAPA. (2019a). Estadísticas de incendios forestales. Ministerio de Agricultura, Pesca y Alimentación. Retrieved from https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/Incendios_default.aspx
  • MAPA. (2019b). Inventario Forestal Nacional. Ministerio de Agricultura, Pesca y Alimentación. Retrieved from https://www.mapa.gob.es/es/desarrollo-rural/temas/politica-forestal/inventario-cartografia/inventario-forestal-nacional/default.aspx
  • Mestre, I., Casado, M. J., & Rodríguez, E. (2015). Tendencias observadas y proyecciones de cambio climático sobre España. In A. Herrero & M. A. Zavala (Eds.), Los bosques y la biodiversidad frente al cambio climático: Impactos, vulnerabilidad y adaptación en España (pp. 87–98). Madrid, Spain: MAGRAMA.
  • Michetti, M., & Pinar, M. (2019). Forest fires across Italian regions and implications for climate change: A panel data analysis. Environmental and Resource Economics, 72(1), 207–246. doi:10.1007/s10640-018-0279-z
  • Miranda, I., Almeida, M. H., & Pereira, H. (2001). Provenance and site variation of wood density in Eucalyptus globulus Labill. At Harvest Age and Its Relation to a Non–destructive Early Assessment. Forest Ecology and Management, 149(1–3), 235–240.
  • Miranda, I., Borrego, C., Sousa, M., Valente, J., Barbosa, P., & Carvalho, A. (2005). Model of forest fire emissions to the atmosphere (Deliverable D252 of SPREAD Project (EVG1-CT-2001-00043)). Aveiro, Portugal: University of Aveiro.
  • MITECO. (2019). Inventario Nacional de Gases de Efecto Invernadero (GEI). Ministerio para la Transición Ecológica. Retrieved from https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/sistema-espanol-de-inventario-sei-/Inventario-GEI.aspx
  • Montero, F., Pasalodos, M., Ruiz-Peinado, R., Onrubia, R., & López-Senespleda, E. (2016, March 1). Estimación de biomasa de los matorrales españoles. Jornada de Bosques y Cambio Climático, Madrid, Spain.
  • Montero, G., Pasalodos-Tato, M., López-Senespleda, E., Onrubia, R., & Madrigal, G. (2013, June 10–14). Ecuaciones para la estimación de la biomasa en matorrales y arbustedos mediterráneos. 6CFE01-140. 6º Congreso Foresta Español, Vitoria, Spain.
  • Montero, G., Ruiz–Peinado, R., & Muñoz, M. (2005). Producción de biomasa y fijación de CO2 por los bosques españoles. Madrid, Spain: INIA.
  • Muñoz-Rojas, M., De la Rosa, D., Zavala, L. M., Jordán, A., & Anaya-Romero, M. (2011). Changes in land cover and vegetation carbon stocks in Andalusia, Southern Spain (1956–2007). Science of the Total Environment, 409, 2796–2806. doi:10.1016/j.scitotenv.2011.04.009
  • Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., … Zhanmg, H. (2013). Anthropogenic and natural radiative forcing. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 659–740). Cambridge, UK: Cambridge University Press.
  • Narayan, C., Fernandes, P., van Brusselen, J., & Schuck, A. (2007). Potential for CO2 emissions mitigation in Europe through prescribed burning in the context of the Kyoto Protocol. Forest Ecology and Management, 251, 164–173. doi:10.1016/j.foreco.2007.06.042
  • Navarro, R. M. (2004). Fitomasa aérea en los ecosistemas de matorral en el monte Can Vilallonga (T.M. de Cassà de La Selva–Girona). Ecología, 18, 99–112.
  • Pacala, S., Birdsey, R., Bridgham, S., Conant, R. T., Davis, K., Hales, B., … Richard, S. (2007). The North American carbon budget. Past and present. In A. W. King, L. Dilling, G. P. Zimmerman, D. M. Fairman, R. A. Houghton, G. H. Marland, … T. J. Wilbanks (Eds.), The first state of the carbon cycle report (SOCCR): The North American carbon budget and implications for the global carbon cycle (pp. 3.1–3.22). U.S. Climate Change Science Program, Washington, D.C., US (United States).
  • Padilla, F. M., Vidal, B., Sánchez, J., & Pugnaire, F. I. (2010). Land–Use changes and carbon sequestration through the twentieth century in a Mediterranean mountain ecosystem: Implications for land management. Journal of Environmental Management, 91, 2688–2695. doi:10.1016/j.jenvman.2010.07.031
  • Page, S. E., Siegert, F., Rieley, F. O., Boehm, H. V., Jayak, A., & Limin, S. H. (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, 61–65. doi:10.1038/nature01131
  • Pasalodos-Tato, M., Almazán, E., Montero, G., & Diaz-Balteiro, L. (2017). Evaluation of tree biomass carbon stock changes in Andalusian forests: Comparison of two methodologies. Carbon Management, 8(2), 125–134. doi:10.1080/17583004.2017.1306407
  • Pausas, J. G., & Fernández-Muñoz, S. (2012). Fire regime changes in the Western Mediterranean Basin: From fuel–Limited to drought–Driven fire regime. Climatic Change, 110, 215–226. doi:10.1007/s10584-011-0060-6
  • Pereira, J. S., Mateus, J. A., Aires, L. M., Pita, G., Pio, C., David, J. S., … Rodrigues, A. (2007). Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems – The effect of drought. Biogeosciences, 4, 791–802. doi:10.5194/bg-4-791-2007
  • Poorter, L., Lianes, E., Moreno-de Las Heras, M., & Zavala, M. A. (2012). Architecture of Iberian canopy tree species in relation to wood density, shade tolerance and climate. Plant Ecology, 213, 707–722. doi:10.1007/s11258-012-0032-6
  • Rigo, D., Libertà, G., Houston, T., Artés, T., & San-Miguel, J. (2017). Forest fire danger extremes in Europe under climate change: Variability and uncertainty (EUR 28926 EN). Luxembourg, Luxembourg: European Union.
  • Rodríguez, F., & Molina, J. R. (2012). Modeling Mediterranean forest fuels by integrating field data and mapping tools. European Journal of Forest Research, 131, 571–582. doi:10.1007/s10342-011-0532-2
  • Rodríguez, J. C. (1994). The carbon budget of the Spanish forests. Biogeochemistry, 25, 197–217. doi:10.1007/BF00024392
  • Ruiz-Peinado, R., Bravo-Oviedo, A., López-Senespleda, E., Bravo, F., & Río, M. (2017). Forest management and carbon sequestration in the Mediterranean region: A review. Forest Systems, 26(2), eR04S. doi:10.5424/fs/2017262-11205
  • San Miguel, A., Roig, S., Alzueta, C., Cañeque, V., Ortuño, S., Cañellas, I., … Muñoz, J. (2009). Los pastos de la Comunidad de Madrid. Tipología, cartografía y evaluación. Madrid, Spain: Comunidad de Madrid.
  • Sánchez, G., Martínez, J., & Pérez, S. (2007). Estimación del volumen de gases de efecto invernadero liberados por incendios forestales en España (1990–2005). 4ª Conferencia Internacional sobre Incendios Forestales, Wildfire 2007, Sevilla, Spain.
  • Schultz, M. G., Heil, A., Hoelzemann, J. J., Spessa, A., Thonicke, K., Goldammer, J., … Pereira, J. M. (2008). Global Emissions from wildland fires from 1960 to 2000. Global Biogeochemical Cycles, 22(2), GB2002.
  • Scott, J. H., & Burgan, R. E. (2005). Standard fire behaviour fuel model: A comprehensive set for use with Rothermel´s surface fire spread model (General Technical Report RMRS-GTR-153). USDA, Forest Service, Washington, D.C., US (United States).
  • Seiler, W., & Crutzen, P. J. (1980). Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 2(3), 207–247. doi:10.1007/BF00137988
  • Shea, R. W., Shea, B. W., & Kauffman, J. B. (1996). Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia. Journal of Geophysical Research: Atmospheres, 101(D19), 23551–23568. doi:10.1029/95JD02047
  • Sil, A., Fonseca, F., Gonçalves, J., Honrado, J., Marta-Pedroso, C., Alonso, J., … Azevedo, J. C. (2017). Analysing carbon sequestration and storage dynamics in a changing mountain landscape in Portugal: Insights for management and planning. International Journal of Biodiversity Science, Ecosystem Services & Management, 13(2), 82–104. doi:10.1080/21513732.2017.1297331
  • Simpson, I. J., Akagi, S. K., Barletta, B., Blake, N. J., Choi, Y., Diskin, G. S., … Blake, D. R. (2011). Boreal forest fire emissions in fresh Canadian smoke plumes: C 1-C 10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN. Atmospheric Chemistry and Physics, 11(13), 6445–6463. doi:10.5194/acp-11-6445-2011
  • Soares, T. G., Carvalho, J. A., Veras, C. A. G., Alvarado, E. C., Gielowe, R., Lincoln, E. N., … Santos, J. C. (2009). Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire. Atmospheric Environment, 43(2), 438–446. doi:10.1016/j.atmosenv.2008.07.063
  • Takeuchi, W., Sekiyama, A., & Imasu, R. (2013). Estimation of global carbon emissions from wild fires in forests and croplands. IGARSS 2013, IEEE International Geoscience and Remote Sensing Symposium, 21–26 July 2013, Melbourne, Australia.
  • Tian, X., Shu, L., Wang, M., & Zhao, F. (2017). The impact of climate change on fire risk in Daxing’anling, China. Journal of Forestry Research, 28(5), 997–1006. doi:10.1007/s11676-017-0383-x
  • Trollope, W. S. W., & Potgieter, A. L. F. (1986). Estimating grass fuel loads with a disc pasture meter in the Kruger National Park. Journal of the Grassland Society of Southern Africa, 3(4), 148–152. doi:10.1080/02566702.1986.9648053
  • Turco, M., Llasat, M. C., von Hardenberg, J., & Provenzale, A. (2014). Climate change impacts on wildfires in a Mediterranean environment. Climatic Change, 125(3–4), 369–380. doi:10.1007/s10584-014-1183-3
  • Van der Werf, G., Randerson, J. T., Collatz, G. J., & Giglio, L. (2003). Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biology, 9, 547–562. doi:10.1046/j.1365-2486.2003.00604.x
  • Van der Werf, G. R., Morton, D. C., DeFries, R. S., Olivier, J. G. J., Kasibhatla, P. S., Jackson, R. B., … Randerson, J. T. (2009). CO2 emissions from forest loss. Nature Geoscience, 2, 737–738. doi:10.1038/ngeo671
  • Van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., … van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707–11735. doi:10.5194/acp-10-11707-2010
  • Vázquez, A., & Moreno, J. M. (1998). Patterns of lightning–, and people–Caused fires in Peninsular Spain. International Journal of Wildland Fire, 8(2), 103–115. doi:10.1071/WF9980103
  • Vázquez, A., Quintana, J. R., & Cañellas, I. (2012). Fire activity projections in the SRES A2 and B2 climatic scenarios in peninsular Spain. International Journal of Wildland Fire, 21, 653–665. doi:10.1071/WF11013
  • Vilén, T., & Fernandes, P. M. (2011). Forest fires in Mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning. Environmental Management, 48(3), 558–567. doi:10.1007/s00267-011-9681-9
  • Vivchar, A. V., Moiseenko, K. B., & Pankratova, N. V. (2010). Estimates of carbon monoxide emissions from wildfires in northern Eurasia for airquality assessment and climate modeling. Izvestiya. Atmospheric and Oceanic Physics, 46(3), 281–293. doi:10.1134/S0001433810030023
  • Ward, D. E., & Hardy, C. C. (1991). Smoke emissions from wildland fires. Environment International, 17, 117–134. doi:10.1016/0160-4120(91)90095-8
  • Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940–943. doi:10.1126/science.1128834
  • Wiedinmyer, C., & Neff, J. C. (2007). Estimates of CO2 from fires in the United States: Implications for carbon management. Carbon Balance and Management, 2, 10. doi:10.1186/1750-0680-2-10
  • Williams, C. A., Gu, H., MacLean, R., Masek, J. G., & Collatz, G. J. (2016). Disturbance and the carbon balance of US forests: A quantitative review of impacts from harvests, fires, insects, and droughts. Global and Planetary Change, 143, 66–80. doi:10.1016/j.gloplacha.2016.06.002
  • Wotton, B. M., Flannigan, M. D., & Marshall, G. A. (2017). Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environmental Research Letters, 12(9), 095003. doi:10.1088/1748-9326/aa7e6e
  • Wright, D., Nichols, D., Slijepcevic, A., Kidnie, S., Chen, A., & Bessell, R. (2015, September 1–3). Improved assessment of grassland fuels in multiple jurisdictions across Australia. Research proceedings from the Bushfire and Natural Hazards CRC & AFAC conference, Adelaide, Australia.
  • Yokelson, R. J., Bertschi, I. T., Christian, T. J., Hobbs, P. V., Ward, D. E., & Hao, W. M. (2003). Trace gas measurements in nascent, aged, and cloudprocessed smoke from African savanna fires by airborne Fourier transform infrared spectroscopy (AFTIR). Journal of Geophysical Research: Atmospheres, 108(D13), 8478. doi:10.1029/2002JD002322
  • Yue, C., Ciais, P., Cadule, P., Thonicke, K., & van Leeuwen, T. T. (2015). Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 2: Carbon emissions and the role of fires in the global carbon balance. Geoscientific Model Development, 8, 1321–1338. doi:10.5194/gmd-8-1321-2015
  • Yue, X. L., & Gao, Q. X. (2018). Contributions of natural systems and human activity to greenhouse gas emissions. Advances in Climate Change Research, 9(4), 243–252. doi:10.1016/j.accre.2018.12.003
  • Zhang, Y., Qin, D., Yuan, W., & Jia, B. (2016). Historical trends of forest fires and carbon emissions in China from 1988 to 2012. Journal of Geophysical Research: Biogeosciences, 121, 2506–2517.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.