182
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Tree Diametric Relationships and Their Implications for Estimation of Above-ground Biomass in a Tropical Rainforest

, , , , &

References

  • Anderson-Teixeira, K. J., Wang, M. M. H., Garvey, J. C. M. C., & Bauer, D. L. (2016). Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Global Change Biology, 22(5), 1690–1709. doi:10.1111/gcb.13226
  • Barreto, T., Silva, J. A. A., Ferreira, R. L. C., & Almeida, C. C. S. (2018). Ajuste de modelos matemáticos à biomassa seca dos compartimentos de plantas lenhosas em área de caatinga. Scientia Forestalis, 46(118), 285–295. doi:10.18671/scifor.v46n118.14
  • Benedetti, M. M., Curi, N., Sparovek, G., Carvalho Filho, A., & Silva, S. H. G. (2011). Updated Brazilian’s georeferenced soil database - an improvement for international scientific information exchanging. Embrapa, 1: 309–332.
  • Byng, J. W., Chase, M. W., Christenhusz, M. J. M., Fay, M. F., Judd, W. S., Mabberley, D. J., Sennikov, A. N., Soltis, D. E., Soltis, P. S., & Stevens, P. F. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181 (1), 1–20. d oi:h ttps://doi.org/1 0.1111/boj.12385
  • Carielo, P., Ferreira, R. A., Ponte Filho, J. L. D., Silva, G. B., Silva, L. P. L., & Serafim, T. (2016). Estimativa do DAP em função do diâmetro do toco para plantios de Eucalyptus urograndis implantados em diferentes espaçamentos. Colloquium Agrariae, 12(Especial), 100–105. doi:10.5747/ca.2016.v12.nesp.000178
  • Chave, J., Méchain, M. R., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., Pélissier, R., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. doi:10.1111/gcb.12629
  • Dalla-Lana, M., Ferreira, R. L. C., Silva, J. A. A., Duda, G. P., Brandão, C. F. L. S., & Silva, A. F. (2018). Biomass equations for caatinga species. Nativa, 6(5), 517–525. doi:10.31413/nativa.v6i5.5361
  • Diamantopoulou, M. J. (2010). Filling gaps in diameter measurements on standing tree boles in the urban forest of Thessaloniki, Greece. Environmental modelling and software, 25(12), 1857–1865. doi:10.1016/j.envsoft.2010.04.020
  • Dieter, M. (2009). Analysis of trade in illegally harvested timber: Accounting for trade via third party countries. Forest Policy and Economics, 11(8), 600–607. doi:10.1016/j.forpol.2009.08.003
  • Ercanli, I., Gunlu, A., & Baskent, E. Z. (2015). Mixed effect models for predicting breast height diameter from stump diameter of Oriental beech in Göldag. Scientia Agricola, 72(3), 245–251. doi:10.1590/0103-9016-2014-0225
  • Ferraz, A. S., Soares, V. P., Soares, C. P. B., Ribeiro, C. A. A., Binoti, D. H. B., & Leite, H. G. (2014). Estimativa do Estoque de Biomassa em um Fragmento Florestal Usando Imagens Orbitais. Floresta e Ambiente, 21(3), 286–296. doi:10.1590/2179-8087.052213
  • Flora do Brasil. (2020). Jardim Botânico do Rio de Janeiro. Available at: h ttp://f loradobrasil.jbrj.gov.br/ Accessed 06 July de 2020. http://floradobrasil.jbrj.gov.br/
  • Gehring, C., Park, S., & Denich, M. (2008). Close relationship between diameters at 30 cm height and at breast height (DBH). Acta Amazonica, 38(1), 71–76. doi:10.1590/S0044-59672008000100008
  • Gonzalez, P., Kroll, B., & Vargas, C. R. (2014). Tropical rainforest biodiversity and aboveground carbon changes and uncertainties in the Selva Central, Peru. Forest Ecology and Management, 312, 78–91. doi:10.1016/j.foreco.2013.10.019
  • Graybill, F. A. (2000). Theory and application of the linear model (1 ed., pp. 204). Duxbury Press.
  • Harmon, M. E., Krankina, O. N., Yatskov, M., & Matthews, E. (2001). Predicting broad-scale carbon stores of woody detritus from plot-level data. In R. Lai, J. Kimble, & B. A. Stewart (Eds.), Assessment Methods for Soil Carbon (pp. 533–552). CRC Press.
  • Huy, B., Poudel, K. P., & Temesgen, H. (2016). Aboveground biomass equations for evergreen broadleaf forests in South Central Coastal ecoregion of Viet Nam: Selection of eco-regional or pantropical models. Forest Ecology and Management, 376, 276–283. doi:10.1016/j.foreco.2016.06.031
  • IPCC. (2006). Intergovernmental Panel on Climate Change. Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme IGES. http://www.ipcc-nggip.iges.or.jp/public/2006gl/
  • IPCC - Intergovernmental Panel on Climate Change. (2015). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (Ed.)]. Retrieved from: https://epic.awi.de/id/eprint/37530/1/IPCC_AR5_SYR_Final.pdf
  • Ishihara, M. I., Utsugi, H., Tanouchi, H., Aiba, M., Kurokawa, H., Onoda, Y., Nagano, M., Umehara, T., Ando, M., Miyata, R., & Hiura, T. (2015). Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests. Ecological Applications, 25(5), 1433–1446. doi:10.1890/14-0175.1
  • Keenan, J. R., Reams, G. A., Achard, F., Freitas, J. V., Grainger, A., & Lindquist, E. (2015). Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment. Forest Ecology and Management, 352, 9–20. doi:10.1016/j.foreco.2015.06.014
  • Le Quere, C., Andres, R. J., Conway, B. T., Houghton, T., House, R. A., Marland, J. I., Peters, G., Van Der Werf, G. P., Ahlström, G. R., Andrew, A., Bopp, R. M., Canadell, L., Ciais, J. G., Doney, P., Enright, S. C., Friedlingstein, C., Huntingford, P., Jain, C., Jourdain, A. K., Kato, C., … Zeng, N. (2013). The global carbon budget 1959–2011. Earth System Science Data, 5(1), 165–185. doi:10.5194/essd-5-165-2013
  • Leite, F. S., & Rezende, A. V. (2010). Estimativa do volume de madeira partindo do diâmetro da cepa em uma área explorada de floresta amazônica de Terra Firme. Ciência Florestal, 20(1), 69–79. doi:10.5902/19805098
  • Lu, K., Bi, H., Watt, D., Strandgard, M., & Li, Y. (2018). Reconstructing the size of individual trees using log data from cut-to-length harvesters in Pinus radiata plantations: a case study in NSW, Australia. Journal of Forestry Research, 29(1), 13–33. doi:10.1007/s11676-017-0517-1
  • Magnusson, W. E., Lima, A. P., Luizão, R., Luizão, F., Costa, F. R. C., Castilho, C. V., & Kinupp, V. F. (2005). Rapeld: a modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotropica, 5(2), 6. doi:10.1590/S1676-06032005000300002
  • Mugasha, W. A., Bollandsås, O. M., & Eid, T. (2013). Relationships between diameter and height of trees in natural tropical forest in Tanzania. Southern Forests, 75(4), 221–237. doi:10.2989/20702620.2013.824672
  • Nascimento, R. G. N., Machado, S. A., Figueiredo, D. J., Augustynczik, A. L. D., & Cavalheiro, R. (2010). Relações dendrométricas de Araucaria angustifolia. Pesquisa Florestal Brasileira, 30(64), 369–374. doi:10.4336/201.pfb.30.64.369
  • Nölke, N., Fehrmann, L., Surati Jaya, I. N., Tiryana, T., Seidel, D., & Kleinn, C. (2015). On the geometry and allometry of big-buttressed trees - a challenge for forest monitoring: new insights from 3D-modeling with terrestrial laser scanning. iForest, 8(5), 574–581. doi:10.3832/ifor1449-007
  • Özçelík, R., Brooks, J. R., Diamantopoulou, M. J., & Wiant, H. V. (2010). Estimating breast height diameter and volume from stump diameter for three economically important species in Turkey. Journal of Forest Research, 25(1), 32–45. doi:10.1080/02827580903280053
  • Pearson, T. S., Walker, S., & Brown, W. S. (2005). Sourcebook for Land Use, Land-Use Change and Forestry Projects. World Bank, Washington, DC.175, 64. Retrieved from: http://hdl.handle.net/10986/16491.
  • Penne, C., Ahrends, B., Deurer, M., & Böttcher, J. (2010). The impact of the canopy structure on the spatial variability in forest floor carbon stocks. Geoderma, 158(4), 282–297. doi:10.1016/j.geoderma.2010.05.007
  • Queiroz, D., Machado, S. A., Figueiredo Filho, A., Arce, J. E., & Koehler, H. S. (2008). Identidade de modelos em funções de afilamento para Mimosa scabrella Bentham em povoamentos nativos da região metropolitana de Curitiba/PR. Floresta, 38(2), 339–349. doi:10.5380/rf.v38i2.11629
  • Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., & Herault, B. (2017). BIOMASS: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8(9), 1163–1167. doi:10.1111/2041-210X.12753
  • Rezende, C. L., Scarano, F. R., Assad, E. D., Joly, C. A., Metzger, J. P., Strassburg, B. B. N., & Mittermeier, R. A. (2018). From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation, 16(4), 215–220. doi:10.1016/j.pecon.2018.10.002
  • Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S., White, L., Silman, M., & Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. PNAS, 108(24): 9899–9904. doi:10.1073/pnas.1019576108.
  • Sampaio, E., Gasson, P., Baracat, A., Cutler, D., Pareyn, F., & Lima, K. C. (2010). Tree biomass estimation in regenerating areas of tropical dry vegetation in northeast Brazil. Forest Ecology and Management, 259(6), 1135–1140. doi:10.1016/j.foreco.2009.12.028
  • Silva, C. A., Klauberg, C., Carvalho, C., Piccolo, S. P., M. C., & Rodriguez, L. C. E. (2015). Estoque de carbono na biomassa aérea florestal em plantações comerciais de Eucalyptus spp. Scientia Forestalis, 43(105), 135–146. Retrieved from: https://www.ipef.br/publicacoes/scientia/nr105/cap13.pdf.
  • Silva, G. C., & Sampaio, E. V. S. B. (2008). Biomassas de partes aéreas em plantas da caatinga. Revista Árvore, 32(3), 567–575. doi:10.1590/S0100-67622008000300017
  • Silveira, P., Koehler, H. S., Sanquetta, C. R., & Arce, J. E. (2007). O estado da arte na estimativa de biomassa e carbono em formações florestais. Revista Floresta, 38(1), 185–206. doi:10.5380/rf.v38i1.11038
  • Smithwick, E. A. H., Harmon, M. E., Remillard, S. M., Acker, S. A., Franklin, J. F. (2002).Potential upper bounds of carbon stores in forests of the Pacific Northwest. Ecol. Appl., 12(5), 1303–1317. doi:10.2307/3099973
  • Somogyi, Z., Cienciala, E., Mäkipää, M., Lehtonen, A., P., & Weiss, P. (2006). Indirect methods of large forest biomass estimation. Europe Journal Forest Research, 126(2), 197–207. doi:10.1007/s10342-006-0125-7
  • Stas, S. M., Rutishauser, E., Chave, J., Anten, N. P. R., & Laumonier, Y. (2017). Estimating the aboveground biomass in an old secondary forest on limestone in the Moluccas, Indonesia: Comparing locally developed versus existing allometric models. Forest Ecology and Management, 389, 27–34. doi:10.1016/j.foreco.2016.12.010
  • Steel, M., & Penny, D. (2000). Parsimony, likelihood, and the role of models in molecular phylogenetics. Molecular Biology and Evolution, 17(6), 839–850. doi:10.1093/oxfordjournals.molbev.a026364
  • Sturges, H. A. (1926). The choice of a class interval. Journal of the American Statistical Association, 21(153), 65–66. doi:10.1080/01621459.1926.10502161
  • The Plant List-a working list of all plant species. Available at: <http://www.theplantlist.org/>. Accessed 06 July de 2020.
  • Uller, H. F., Oliveira, L. Z., & Klitzke, A. R. (2019). Aboveground biomass quantification and tree-level prediction models for the Brazilian subtropical Atlantic Forest, Southern Forests. Southern Forests: Journal of Forest Science, 81(3), 261–271. doi:10.2989/00306525.2019.1581498
  • Vieira, S. A., Alves, L. F., Aidar, M. P. M., Araújo, L. S., Baker, T., Batista, J. L. F., Campos, M. C., Camargo, P. B., Chave, J., Delitti, W. B. C., Higuchi, N., Honorio, E., Joly, C. A., Keller, M., Martinelli, L. A., Mattos, E. A., Metzker, T., Phillips, O., Santos, F. A. M., Shimabukuro, M. T., … Trumbore, S. E. (2008). Estimation of biomass and carbon stocks: the case of the Atlantic Forest. Biota Neotropica, 8(2), 21–29. doi:10.1590/S1676-06032008000200001
  • Walther, B. A., & Moore, J. L. (2005). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28(6), 815–829. doi:10.1111/j.2005.0906-7590.04112.x
  • Williams, V. L., Witkowski, E. T. F., & Balkwill, K. (2007). Relationship between bark thickness and diameter at breast height for six tree species used medicinally in South Africa. South African Journal of Botany, 73(3), 449–465. doi:10.1016/j.sajb.2007.04.001
  • Yatskova, M. A., Harmon, M. E., Barrett, T. M., & Dobelbower, K. R. (2019). Carbon pools and biomass stores in the forests of Coastal Alaska: Uncertainty of estimates and impact of disturbance. Forest Ecology and Management, 434, 303–317. doi:10.1016/j.foreco.2018.12.014
  • Zhang, Y., Li, Y., & Bi, H. (2015). Converting diameter measurements of Pinus radiata taken at different breast heights. Australian Forestry, 78(1), 45–49. doi:10.1080/00049158.2015.1029426
  • Zuur, A. F., Elena, N. I., & Elphick, C. S. (2009). A protocol for data exploration to avoid common statistical problems. Method in Ecology Evolution, 1(1), 3–14. doi:10.1111/j.2041-210X.2009.00001.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.