217
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Proximate Analysis and Strength Properties of Carbonized Woods from the Most-Used Tropical Timbers from the Afram Plains, Ghana’s Charcoal Production Hub

&

References

  • Agyei, F. K., Hansen, C. P., & Acheampong, E. (2018). Profit and profit distribution along Ghana’s charcoal commodity chain. Energy for Sustainable Development, 47, 62–74.
  • Akowuah, J. O., Kemausuor, F., & Mitchual, S. J. (2012). Physico-chemical characteristics and market potential of sawdust charcoal briquette. International Journal of Energy and Environmental Engineering, 3(20), 2–6.
  • American Society for Testing and Materials (ASTM) D 1102-84. (2007). American Society for Testing and Materials - Standard Test Method for Ash in Wood.
  • American Society for Testing and Materials (ASTM) D 1762-84. (2001) . Standard Test Method for Chemical Analysis of Wood Charcoal.
  • American Society for Testing and Materials (ASTM) D 2166. (1985). American Society for Testing and Materials-Standard Test Method of Compressive Strength of Wood.
  • American Society for Testing and Materials (ASTM) D 2854. (1970). American Society for Testing and Materials-Standard test method tor apparent density of activated carbon.
  • American Society for Testing and Materials (ASTM) D 5832-98. (2014). American Society for Testing and Materials - Standard Test Method for Volatile Matter Content in Activated Charcoal.
  • American Society for Testing and Materials (ASTM) D440. (2002). Standard Test Method of Drop Test for Coal.
  • Babajide, C. F., Ibukun, J. V., Oluwaseyi, O. A., & Rivi, D. N. (2018). Performance Evaluation of the Physical and Combustion Properties of Briquettes Produced from Agro-Wastes and Wood Residues. Recycling MDPI, 3(37), 1–13.
  • Bboluwaji, F. E., Babatunde, O. O., Abosede, O. A., Onose, A. M., & Fakinle, S. B. (2019). Proximate analysis of the properties of some southwestern Nigeria sawdust of different wood species. International Journal of Civil Engineering and Technology (IJCIET), 10 (3), 51–59. Article ID: IJCIET_10_03_005. Print: 0976-6308 and Online: 0976-6316
  • Brobbey, K. L., Christian Pilegaard Hansen, P. C., Kyere, B., & Pouliot, M. (2019). The economic importance of charcoal to rural livelihoods: Evidence from a key charcoal-producing area in Ghana. Forest Policy and Economics, 101, 19–31.
  • Carrillo, P. A., Foroughbakhch, R. P., & Bustamante-García, V. (2013). Calidad del carbón de Prosopis laevigata (Humb. and Bonpl. Ex Willd.) M.C. Johnst. Y Ebenopsis ébano (Berland.) Barneby and J.W. Grimes elaborado en horno tipo fosa. Revista mexicana de ciencias forestales, 4(17), 62–71.
  • CEFIC (European Chemical Industry Council/European Council of Chemical Manufacturers) (1986). Test Methods for Activated Carbon. . Activated Carbon Producers Association (ACPA), Brussels. pp. 1–47
  • Cooperazione, R. (2011). Developing Eco-charcoal Certification to Fight against Desertification and Poverty in the Afram Plains Baseline Survey Report on Existing and Past Management Intervention Policies on Charcoal, 2011. Accessed: 15th February, 2016. http://www.ongrc.org/lang/ita/images/EcoCharcoalMgmt_2011_lr.pdf.
  • Cuvilas, C., Lhate, I., Jirjis, R., & Terziev, N. (2014). The characterization of wood species from Mozambique as a fuel. Energy Sources, Part A, 36(8), 851–857.
  • Demirbas, A. (2003). Sustainable coffering of biomass with coal. Energy. Conversion Management, 44(9), 1465–1479.
  • EN 1860. (2005). Appliances, solid fuels and firelighters for barbecuing. Barbecue charcoal and barbecue charcoal briquettes. Requirements and Test Methods.
  • Energy Commission. (2019). Ghana renewable energy master plan. 83 pp. http://www.energycom.gov.gh/files/Renewable-Energy-Masterplan-February-2019.pdf
  • Faizal, H. M., Latiff, Z. A., Mazlan, A. W., & Darus, A. N. (2009). Physical and combustion characteristic of Biomass Residue from palm oil mills: New aspects of Fluid mechanics, Heat transfer and Environment, Faculty of Mechanical Engineering, University of Teknologi Malaysia.
  • Food and Agriculture Organisation of the United Nation (FAO). (2008) . Industrial charcoal production. Development of a sustainable charcoal industry.
  • Food and Agriculture Organization of the United Nation (FAO). (1987). Simple Technologies for charcoal making. FAO Forestry.
  • Food and Agriculture Organization of the United Nation (FAO). (2000). The challenge of rural energy and poverty in developing countries. World Energy Council/ Food and Agriculture Organization of the United Nations.
  • Food and Agriculture Organization of the United Nations (FAO) (1985). Industrial charcoal making, FAO Forestry Paper No. 63, FAO, Rome.
  • Himbane, P. B., Ndiaye, G. L., Napoli, A., & Kobor, D. (2018). Physicochemical and mechanical properties of biomass coal briquettes produced by artisanal method. African Journal of Environmental Science and Technology).12(12) 480–486.
  • Ijagbemi, C. O., Adepo, S. O., & Ademola, K. S. (2014). Evaluation of combustion characteristic of charcoal from different tropical wood species. IOSR Journal of Engineering, 4(4), 50–57.
  • Karltun, E., Saarsalmi, A., Ingerslev, M., Mandre, M., Andersson, S., Gaitnieks, T., Ozolinius, R., & Varnagiryte, K. I. (2008). Wood Ash Recycling – Possibilities and Risks. In D. Röser, A. Asikainen, K. Raulund-Rasmussen, & I. Stupak (Eds.), Sustainable Use of Forest Biomass for Energy (pp. 79–108). Springer Netherlands.
  • Kim, H. J., Lu, G. Q., Naruse, I., Yuan, J., & Ohtake, K. (2001). Modeling combustion characteristics of bio-coal briquettes. Journal of Energy Resources Technology, 123(1), 27–31.
  • Kituyi, E., Marufa, L., Huber, B., Wandiga, S. O., Jumba, O. I., Andreae, M. O., & Helas, G. (2001). Biofuels consumption rates in Kenya. Biomass & Bioenergy, 20(2), 83–99.
  • Loo, S. V., & Koppejan, J. (2008). Biomass Ash Characteristics and Behaviour in Combustion Systems. In The Handbook of Biomass Combustion and Co-Firing (pp. 249–288).
  • Maginot, N. H., Foroughbakhch, R. P., Carrillo, P. A., & Colin, U. S. (2014). Bioenergy potential of shrub from native species of northeastern Mexico. International Journal of Agricultural Policy and Research, 2 (12), 475–483. Available online at http://www.journalissues.org/IJAPR/
  • Márquez-Montesino, F., Cordero, T. A., Rodríguez, M. J., & Rodríguez-Jiménez, J. J. (2001). Estudio del potencial energético de biomasa Pinus caribea Morelet var. caribea (Pc) y Pinus tropicalis orelert (Pt); Eucalyptus saligna Smith (Es), Eucalyptus citrodora Hook (Ec) Eucalyptus pellita F. Muell (Ep); de la Provincia de Inar del Río. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 7(1), 83–89.
  • https://mei.org.uk/files/pdf/Samplingjan06.pdf
  • Mesa, L. P. A. R., Soriano, N. A., Marquez, D. R. A., Adonis, P., & Adornado, P. A. (2020). Study on the proximate and ultimate analyses and calorific value of coal blending between torrefied biomass from coconut (Cocos nucifera) husk and Semirara coal. IOP Conference Series: Earth and Environmental Science 1–10. IOP Publishing.
  • Obeng, H. B. (1979) Soil Map of Ghana. Map 1. Cartographic Section of the Soil Research Institute [SRI] (C.S.I.R.), Kumasi. Joint Research Centre, European Soil Data Centre (ESDAC).
  • Omoniyi, T. E., & Olorunnisola, A. O. (2014). Experimental Characterisation of Bagasse Biomass Material for Energy Production. International Journal of Engineering and Technology, 4(10).
  • Ruiz-Aquino, F., Ruiz-Ángel, S., Santiago-García, W., Fuente-Carrasco, M. E., Sotomayor-Castellanos, J. R., & Carrillo-Parra, A. (2019). Energy characteristics of wood and charcoal of selected tree species in Mexico. Wood Research, 64(1), 71–82.
  • Santos, R. C., Carneiro, A. D., & Castro, A. F. (2011). Correlation of Quality Parameters of Wood and Charcoal of Clones of Eucalyptus. Scientia Forestalis, 90, 221–230.
  • Seidel, A. (2008). Charcoal in Africa, importance, problems and possible solutions. Eschborn, GTZ, Household Energy Programme.
  • Sukiran, M. A., Abnisa, F., Daud, W. M. A. W., Bakar, N. A., & Loh, S. K. (2017). A review of torrefaction of oil palm solid wastes for biofuel production. Energy Conversion and Management, 149, 101–120.
  • Tembe, E. T., Otache, P. O., & Ekhuemelo, D. O. 2014. Density, Shatter index, and Combustion properties of briquettes produced from groundnut shells, rice husks and saw dust of Daniellia oliveri. Journal of Applied Biosciences, 82(1), 7372–7378.
  • Tsoumis, G. (1991). Science and Technology of Wood: Structure, Properties, Utilization. Van Nostr and Rein old.
  • Werkelin, J., Lindberg, D., Boström, D., Skrifvars, B. J., & Hupa, M. (2011). Ash-forming elements in four Scandinavian wood species part 3: Combustion of five spruce samples. Biomass & Bioenergy, 35(1), 725–733.
  • Wiredu, O. J. (2017). Charcoal production as a livelihood in the Kwahu North and South Districts of the Afram Plains. An MPhil. Thesis Submitted to the Department of Silviculture, Kwame Nkrumah University of Science and Technology, Kumasi - Ghana. Pp 69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.