147
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Physical and Energy Characteristics, Compression Strength and Chemical Modification of Charcoal Produced from Sixteen Tropical Woods in Costa Rica

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdullah, H., Mediaswanti, K. A., & Wu, H. (2010). Biochar as a fuel: 2. Significant differences in fuel quality and ash properties of biochars from various biomass components of mallee trees. Energy & Fuels, 24(3), 1972–1979. https://doi.org/10.1021/ef901435f
  • Ahmed, A., Abu Bakar, M. S., Azad, A. K., Sukri, R. S., & Phusunti, N. (2018). Intermediate pyrolysis of Acacia cincinnata and Acacia holosericea species for bio-oil and biochar production. Energy Conversion and Management, 176, 393–408. https://doi.org/10.1016/j.enconman.2018.09.041
  • Andrade, F. W. C., Filho, M. T., & Moutinho, V. H. P. (2018). Influence of wood physical properties on charcoal from Eucalyptus spp. Floresta E Ambiente, 25(3), 20150176. https://doi.org/10.1590/2179-8087.017615
  • Antal, M. J., & Grønli, M. (2003). The art, science, and technology of charcoal production †. Industrial & Engineering Chemistry Research, 42(8), 1619–1640. https://doi.org/10.1021/ie0207919
  • Anupam, K., Sharma, A. K., Lal, P. S., Dutta, S., & Maity, S. (2016). Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding. Energy, 106, 743–756. https://doi.org/10.1016/j.energy.2016.03.100
  • Assis, M. R., Brancheriau, L., Napoli, A., & Trugilho, P. F. (2016). Factors affecting the mechanics of carbonized wood: Literature review. Wood Science and Technology, 50(3), 519–536. https://doi.org/10.1007/s00226-016-0812-6
  • ASTM. (2013a). Standard test method for chemical analysis of wood charcoal. ASTM D1762 - 84. In Annual book of ASTM standards. Volume 4.10 (Woods). American Standard Testing Material, International, West Conshohocken, PA. 2p. www.astm.org
  • ASTM. (2013b). Standard test method for gross calorific value of coal and coke no title. D5865M-11 In Annual Book of ASTM Standards. Volume 4.10 (Woods). American Standard Testing Material, International, West Conshohocken, 19p. PA www.astm.org
  • ASTM. (2015). Standard test method for proximate analysis of coal and coke. ASTM D3173. In Annual book of ASTM standards. Volume 4.10 (Woods). American Standard Testing Material, International, West Conshohocken, PA. 20p. www.astm.org
  • Chen, W.-H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847–866. https://doi.org/10.1016/j.rser.2014.12.039
  • Dufourny, A., Van De Steene, L., Humbert, G., Guibal, D., Martin, L., & Blin, J. (2019). Influence of pyrolysis conditions and the nature of the wood on the quality of charcoal as a reducing agent. Journal of Analytical and Applied Pyrolysis, 137, 1–13. https://doi.org/10.1016/j.jaap.2018.10.013
  • Espinoza-Durán, J., & Moya, R. (2013). Logging and industrialization of two gmelina arborea plantations with different degrees of slopes. Revista Chapingo, Serie Ciencias Forestales Y Del Ambiente, 19(2), 237-248. https://doi.org/10.5154/r.rchscfa.2011.09.067
  • Iizuka, H., Fushitani, M., Okabe, T., & Saito, K. (1999). Mechanical properties of wood ceramics: A porous carbon material. Journal of Porous Materials, 6(3), 175–184. https://doi.org/10.1023/A:1009691626946
  • Kaur, V., Kaur, B., Kaur, K., Kaur, M., & Kaur, S. (2018). Preparation and characterisation of charcoal material derived from bamboo for the adsorption of sulphur contaminated water. London Journal of Research in Science: Natural and Formal, 18(2), 824557.
  • Kumar, M. (1999). Mechanical properties of acacia and eucalyptus wood chars. Energy Sources, 21(8), 675–685. https://doi.org/10.1080/00908319950014425
  • Lauri, P., Forsell, N., Gusti, M., Korosuo, A., Havlík, P., & Obersteiner, M. (2019). Global woody biomass harvest volumes and forest area use under different SSP-RCP scenarios. Journal of Forest Economics, 34(3–4), 285–309. https://doi.org/10.1561/112.00000504
  • Liu, Z., Huang, Y., & Zhao, G. (2016). Preparation and characterization of activated carbon fibers from liquefied wood by ZnCl2 activation. BioResources, 11(2), 3178–3190. https://doi.org/10.15376/biores.11.2.3178-3190
  • Manyà, J. J. (2012). Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science & Technology, 46(15), 7939–7954. https://doi.org/10.1021/es301029g
  • Mothé, C. G., & Miranda, I. C. (2009). Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. Journal of Thermal Analysis and Calorimetry, 97(2), 661–665. https://doi.org/10.1007/s10973-009-0346-3
  • Moya, R., & Muñoz, F. (2010). Physical and mechanical properties of eight fast-growinging plantation speciesspecies in Costa Rica. Journal of Tropical Forest Science, 22(3), 317-328. https://www.jstor.org/stable/23616661
  • Moya, R., & Tenorio, C. (2013). Fuelwood characteristics and its relation with extractives and chemical properties of ten fast-growth species in Costa Rica. Biomass & Bioenergy, 56, 14–21. https://doi.org/10.1016/j.biombioe.2013.04.013
  • Moya, R., Tenorio, C., Salas, J., Berrocal, A., & Muñoz, F. (2019). Tecnología de la madera de plantaciones forestales. Editorial Tecnológica de Costa Rica (1ra ed.). editorial Tecnologica de Costa Rica- Editorial Universidad de Costa Rica.
  • Nisgoski, S., de Muñiz, G. I. B., Batista, F. R. R., & Mölleken, R. E. (2014). Influence of carbonization temperature on the anatomical characteristics of Ocotea porosa (Nees & Mart. Ex Nees) L. Barroso. Wood Science and Technology, 48(2), 301–309. https://doi.org/10.1007/s00226-013-0602-3
  • Ozdemir, I., Şahin, M., Orhan, R., & Erdem, M. (2014). Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Processing Technology, 125, 200–206. https://doi.org/10.1016/j.fuproc.2014.04.002
  • Pastor-Villegas, J., Meneses Rodríguez, J. M., Pastor-Valle, J. F., Rouquerol, J., Denoyel, R., & García García, M. (2010). Adsorption-desorption of water vapour on chars prepared from commercial wood charcoals, in relation to their chemical composition, surface chemistry and pore structure. Journal of Analytical and Applied Pyrolysis, 88(2), 124–133. https://doi.org/10.1016/j.jaap.2010.03.005
  • Pereira, B. L. C., Carneiro, A. D. C. O., Carvalho, A. M. M. L., Colodette, J. L., Oliveira, A. C., & Fontes, M. P. F. (2013). Influence of chemical composition of eucalyptus wood on gravimetric yield and charcoal properties. BioResources, 8(3), 3. https://doi.org/10.15376/biores.8.3.4574-4592
  • Pimsuta, M., Sosa, N., Deekamwong, K., Keawkumay, C., Thathong, Y., Rakmae, S., Junpirom, S., Prayoonpokarach, S., & Wittayakun, J. (2018). Charcoal and wood vinegar from pyrolysis of lead tree wood and activated carbon from physical activation. Suranaree Journal of Science and Technology, 25(2), 177–190. https://www.researchgate.net/publication/328981535
  • Qian, K., Kumar, A., Zhang, H., Bellmer, D., & Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055–1064. https://doi.org/10.1016/j.rser.2014.10.074
  • Ren, X., Cai, H., Chang, J., & YongMing, F. (2018). TG-FTIR study on the pyrolysis properties of lignin from different kinds of woody biomass. Paper and Biomaterials, 3(2), 1–7. http://pbm.ijournals.cn/ch/reader/create_pdf.aspx?file_no=201802001&flag=1&journal_id=zzyswzcl&year_id=2018
  • Rousset, P., Figueiredo, C., De Souza, M., & Quirino, W. (2011). Pressure effect on the quality of eucalyptus wood charcoal for the steel industry: A statistical analysis approach. Fuel Processing Technology, 92(10), 1890–1897. https://doi.org/10.1016/j.fuproc.2011.05.005
  • Saiz, G., Goodrick, I., Wurster, C. M., Zimmermann, M., Nelson, P. N., & Bird, M. I. (2014). Charcoal re-combustion efficiency in tropical savannas. Geoderma, 219–220, 40–45. https://doi.org/10.1016/j.geoderma.2013.12.019
  • Schmidt, H.-P. (2012). 55 Uses of Biochar. Ithaka Journal, 25(1/2012), 13–25. www.delinat-institut.org
  • Serrano, R., & Moya, R. (2011). Procesamiento, uso y mercado de la madera en Costa Rica: Aspectos históricos y análisis crítico. Revista Forestal Mesoamericana Kurú, 8(21), 1–12. https://revistas.tec.ac.cr/index.php/kuru/article/view/370
  • Shankar Tumuluru, J., Sokhansanj, S., Hess, J. R., Wright, C. T., & Boardman, R. D. (2011). REVIEW: A review on biomass torrefaction process and product properties for energy applications. Industrial Biotechnology, 7(5), 384–401. https://doi.org/10.1089/ind.2011.7.384
  • Singh, R., Krishna, B. B., Kumar, J., & Bhaskar, T. (2016). Opportunities for utilization of non-conventional energy sources for biomass pretreatment. Bioresource Technology, 199, 398–407. https://doi.org/10.1016/j.biortech.2015.08.117
  • Solar, J., De Marco, I., Caballero, B. M., Lopez-Urionabarrenechea, A., Rodriguez, N., Agirre, I., & Adrados, A. (2016). Influence of temperature and residence time in the pyrolysis of woody biomass waste in a continuous screw reactor. Biomass & Bioenergy, 95, 416–423. https://doi.org/10.1016/j.biombioe.2016.07.004
  • Tripathi, M., Sahu, J. N., & Ganesan, P. (2016).Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and sustainable energy reviews 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122.
  • Tursi, A. (2019). A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Research Journal, 6(2), 962–979. https://doi.org/10.18331/BRJ2019.6.2.3
  • Vafaeenezhad, H., Zebarjad, S. M., & Khaki, J. V. (2013). Intelligent modeling using fuzzy rule-based technique for evaluating wood carbonization process parameters. The International Journal of Advanced Manufacturing Technology, 68(5–8), 1471–1478. https://doi.org/10.1007/s00170-013-4935-8
  • Várhegyi, G., Szabó, P., & Antal, M. J. (2002). Kinetics of charcoal devolatilization. Energy and Fuels, 16(3), 724–731. https://doi.org/10.1021/ef010227v
  • Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2013). An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel, 105, 40–76. https://doi.org/10.1016/j.fuel.2012.09.041
  • Wang, C., Zhang, X., Liu, Y., & Che, D. (2012). Pyrolysis and combustion characteristics of coals in oxyfuel combustion. Applied Energy, 97, 264–273. https://doi.org/10.1016/j.apenergy.2012.02.011
  • Wang, L., Skreiberg, Ø., Van Wesenbeeck, S., Grønli, M., & Antal, M. J. (2016a). Experimental study on charcoal production from woody biomass. Energy & Fuels, 30(10), 7994–8008. https://doi.org/10.1021/acs.energyfuels.6b01039
  • Wang, L., Várhegyi, G., Skreiberg, Ø., Li, T., Grønli, M., & Antal, M. J. (2016b). Combustion characteristics of biomass charcoals produced at different carbonization conditions: A kinetic study. Energy & Fuels, 30(4), 3186–3197. https://doi.org/10.1021/acs.energyfuels.6b00354
  • Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240–261. https://doi.org/10.1016/j.fuel.2017.12.054
  • Zhang, J., & You, C. (2013). Water holding capacity and absorption properties of wood chars. Energy & Fuels, 27(5), 2643–2648. https://doi.org/10.1021/ef4000769

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.