172
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Variation in Wood Density and Mechanical Properties of Acacia mangium Provenances Planted in Vietnam

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Baar, J., Tippner, J., & Gryc, V. (2012). The influence of wood density on longitudinal wave velocity determined by the ultrasound method in comparison to the resonance longitudinal method. European Journal of Wood and Wood Products, 70(5), 767–769. https://doi.org/10.1007/s00107-011-0550-2
  • Baar, J., Tippner, J., & Rademacher, P. (2015). Prediction of mechanical properties – Modulus of rupture and modulus of elasticity – Of five tropical species by nondestructive methods. Maderas: Ciencia y Tecnologia, 17(2), 239–252.
  • Barrett, J. D., Lam, F., & Chen, Y. (2008). Comparison of machine grading methods for Canadian Hemlock. Proceedings of 10th World Conference on Timber Engineering, Miyazaki, Japan (NY 12571: Red Hook).
  • Bucur, V., & Böhnke, I. (1994). Factors affecting ultrasonic measurements in solid wood. Ultrasonics, 32(5), 385–390. https://doi.org/10.1016/0041-624X(94)90109-0
  • Core Team, R. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Divos, F., & Tanaka, T. (1997). Lumber strength estimation by multiple regression. Holz Roh Werkst, 51(5), 467–471. https://doi.org/10.1515/hfsg.1997.51.5.467
  • Duong, D. V., & Ha, T. Q. L. (2020). Evaluating mechanical properties of Acacia mangium wood using nondestructive method. Forestry Science and Technology Journal, 5, 126–133. http://journal.vnuf.edu.vn/journal/5-2020. ( in Vietnamese with English summary).
  • Duong, D. V., Hasegawa, M., & Matsumura, J. (2019). The relations of fiber length, wood density, and compressive strength to ultrasonic wave velocity within stem of Melia azedarach. Journal of the Indian Academy of Wood Science, 16(1), 1–8. https://doi.org/10.1007/s13196-018-0227-0
  • Duong, D. V., & Matsumura, J. (2018). Within-stem variations in mechanical properties of Melia azedarach planted in northern Vietnam. Journal Wood Science, 64(4), 329–337. https://doi.org/10.1007/s10086-018-1725-9
  • Duong, D. V., & Ridley-Ellis, D. (2021). Estimating mechanical properties of clear wood from ten-year-old Melia azedarach trees using the stress wave method. European Journal of Wood and Wood Products, 79(4), 941–949. https://doi.org/10.1007/s00107-021-01664-8
  • Duong, D. V., Schimleck, L., Dinh, T. T., & Tran, C. V. (2021). Radial variation in cell morphology of Melia azedarach planted in northern Vietnam. Maderas: Ciencia y Tecnologia, 23(7), 1–10. https://doi.org/10.4067/s0718-221x2021000100407
  • Guntekin, E., Ozkan, S., & Yilmaz, T. (2014). Prediction of bending properties for beech lumber using stress wave method. Maderas: Ciencia y Tecnologia, 16(1), 93–98
  • Hai, P. H., Duong, L. A., Toan, N. Q., & Ha, T. T. T. (2015). Genetic variation in growth, stem straightness, pilodyn and dynamic modus of elasticity in second-generation progeny tests of Acacia mangium at three sites in Vietnam. New Forests, 46(4), 577–591. https://doi.org/10.1007/s11056-015-9484-6
  • Hegde, M., Palanisamy, K., & Yi, J. S. (2013). Acacia mangium Wild. – A fast growing tree for tropical plantation. Journal of Forest and Environmental Science, 29(1), 1–14. https://doi.org/10.7747/JFS.2013.29.1.1
  • Ikeda, K., & Arima, T. (2000). Quality evaluation of standing trees by a stress-wave propagation method and its application II. Evaluation of sugi stand and application to production of sugi (Cryptomeria japonica D. Don) structural square sawn lumber. Mokuzai Gakkaishi, 46 (3), 189–196. http://www.jwrs.org/english/journals/mkz-toce/mkze-46/. ( in Japanese).
  • Ilic, J. (2001). Relatioship among the dynamic and static elastic properties of air-dry Eucalyptus delegatensis R. Baker. Holz als Roh- und Werkstoff, 59(3), 169–175. https://doi.org/10.1007/s001070100198
  • Ilic, J. (2003). Dynamic MOE of 55 species using small wood beams. Holz als Roh- und Werkstoff, 61(3), 167–172. https://doi.org/10.1007/s00107-003-0367-8
  • Ishiguri, F., Diloksumpun, S., Tanabe, J., Ohshima, J., Iizuka, K., & Yokota, S. (2017). Among-family variations of solid wood properties in 4-year-old Eucalyptus camaldulensis trees selected for pulpwood production in Thai land. International Wood Products Journal, 8(1), 1–5. https://doi.org/10.1080/20426445.2016.1261528
  • Ishiguri, F., Matsui, R., Iizuka, K., Yokota, S., & Yoshizawa, N. (2008). Prediction of the mechanical properties of lumber by stress-wave velocity and Pilodyn penetration of 36-year-old Japanese larch trees. Holz als Roh- und Werkstoff, 66(4), 275–280. https://doi.org/10.1007/s00107-008-0251-7
  • JIS Z2101:1994. (2000). Methods of test for woods. Japanese Standard Association. ( in Japanese).
  • Jusoh, I., Zaharin, F. A., & Adam, N. S. (2014). Wood quality of Acacia hybrid and second-generation Acacia mangium. BioResources, 9(1), 150–160. https://doi.org/10.15376/biores.9.1.150-160
  • Kabir, M. F., Sidek, H. A. A., Daud, W. M., & Khalid, K. (1997). Effect of moisture content and grain angle on the ultrasonic properties of rubber wood. Holzforchung, 51(3), 263–267. https://doi.org/10.1515/hfsg.1997.51.3.263
  • Larsson, D., Ohlsson, S., Perstorper, M., & Brundin, J. (1998). Mechanical properties of sawn timber from Norway spruce. Holz als Roh- und Werkstoff, 56(5), 331–338. https://doi.org/10.1007/s001070050329
  • Makino, K., Ishiguri, F., Wahyudi, I., Takashima, Y., Iizuka, K., Yokota, S., & Yoshizawa, N. (2012). Wood properties of young Acacia mangium trees planted in Indonesia. Forest Products Journal, 62(2), 102–106. https://doi.org/10.13073/0015-7473-62.2.102
  • Miranda, I., Almeida, M. H., & Pereira, H. (2001). Influence of provenance, subspecies and site on wood density in Eucalyptus globulus labill. Wood and Fiber Science, 33(1), 9–15. https://wfs.swst.org/index.php/wfs/article/view/66.
  • Moya, R., & Munoz, F. (2010). Physical and mechanical properties of eight fast growing plantation species in Costa Rica. Journal of Tropical Forest Science, 22(3), 317–328. https://www.jstor.org/stable/23616661.
  • Ngadianto, A., Ishiguri, F., Nezu, I., Takahashi, Y., Tanabe, J., Hidayati, F., Irawati, D., Ohshima, J., & Yokota, S. (2020). Wood properties and simulated modulus of elasticity of glulam in three fast-growing tree species in community forests in Yogyakarta, Java Island, Indonesia. Tropics, 29(3), 89–104. https://doi.org/10.3759/tropics.MS20-02
  • Nugroho, W. D., Marsoem, S. N., Yasue, K., Fujiwara, T., Nakajima, T., Hayakawa, M., Nakaba, S., Yamahishi, Y., Jin, H. O., Kobo, T., & Funada, R. (2012). Radial variations in the anatomical characteristics and density of Acacia mangium of five different provenances in Indonesia. Journal of Wood Science, 58(3), 185–194. https://doi.org/10.1007/s10086-011-1236-4
  • Sahri, M. H., Ashaari, Z., Kader, R. A., & Mohmod, A. L. (1998). Physical and mechanical properties of Acacia mangium and Acacia auriculiformis from different provenances. Pertanika Journal of Tropical Agricultural Science, 21(2), 73–81.
  • Schimleck, L., Dahlen, J., Apiolaza, L. A., Downes, G., Emms, G., Evans, R., Moore, J., Paques, L., Van den Bulcke, J., & Wang, X. (2019). Non-destructive evaluation techniques and what they tell us about wood property variation. Forests, 10, 718. https://doi.org/10.3390/f10090728
  • Shanavas, A., & Kumar, B. M. (2006). Physical and mechanical properties of three agroforestry tree species from Kerala, India. Journal of Tropical Agriculture, 44 (1–2), 23–30. http://jtropag.kau.in/index.php/ojs2/article/view/146.
  • Sharma, S. K., & Shukla, S. R. (2012). Properties evaluation and defects detection in timbers by ultrasonic non-destructive technique. Journal of the Indian Academy of Wood Science, 9(1), 66–71. https://doi.org/10.1007/s13196-012-0064-5
  • Solorzano, S., Moya, R., & Murillo, O. (2012). Early prediction of basic density, shrinking, presence of growth stress, and dynamic elastic modulus based on the morphological tree parameters of Tectona grandis. Journal of Wood Science, 58(4), 290–299. https://doi.org/10.1007/s10086-012-1261-y
  • Tumenjargal, B., Ishiguri, F., Takahashi, Y., Nezu, I., Baasan, B., Chultem, G., Aiso-Sanada, H., Ohshima, J., & Yokota, S. (2020). Predicting the bending properties of Larix sibirica lumber using nondestructive testing method. International Wood Products Journal, 11(2), 1–7. https://doi.org/10.1080/20426445.2020.1735754
  • Viet, D. D., Ma, T., Inagaki, T., Kim, N. T., Chi, N. Q., & Tsuchikawa, S. (2020). Physical and mechanical properties of fast growing polyploid Acacia hybrids (A. auriculiformis × A. mangium) from Vietnam. Forests, 11, 717. https://doi.org/10.3390/f11070717
  • Vietnam Ministry of Agriculture and Rural Development. (2017). Decision appoving: Planning on conversion of forest plant species to serve the project on restructuring the forestry sector, Ha Noi, Vienam (No. 23/QD-BNN-TCLN). ( in Vietnamese).
  • Vo, D. H., Tran, L. D., Nguyen, V. B., Hoang, V. T., Tran, A. H., & Duong, Q. T. (2018). Site and productivity management of multi-rotation plantations of Acacia mangium, Acacia auriculiformis and Eucalyptus hybrids for saw-log production in Vietnam (Technical report). Vietnamese Academy of Forest Sciences ( in Vietnamese).
  • Wang, X., Ross, R. J., McClellan, M., Barbour, R. J., Erickson, J. R., Forsman, J. W., & McGinnis, G. D. (2001). Nondestructive evaluation of standing trees with a stress wave method. Wood and Fiber Science, 33(4), 522–533. https://wfs.swst.org/index.php/wfs/article/view/1014.
  • Zobel, B. J., & van Buijtenen, J. P. (1989). Wood variation, its causes and control. Springer, Verlag.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.