197
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of Mixed-Effects Individual-Tree Diameter Increment Model for Casuarina Equisetifolia Considering the Effects of Tree-Size Diversity, Tree Density Reduction, and Climate

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Adams, H. D., Guardiola-Claramonte, M., Barron-Gafford, G. A., Villegas, J. C., Breshears, D. D., Zou, C. B., Troch, P. A., & Huxman, T. E. (2009). Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences, 106(17), 7063–7066. https://doi.org/10.1073/pnas.0901438106
  • Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., & Hogg, E. T. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology & Management, 259(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
  • Boisvenue, C., & Running, S. W. (2006). Impacts of climate change on natural forest productivity–evidence since the middle of the 20th century. Global Change Biology, 12(5), 862–882. https://doi.org/10.1111/j.1365-2486.2006.01134.x
  • Bolte, A., Ammer, C., Löf, M., Madsen, P., Nabuurs, G.-J., Schall, P., Spathelf, P., & Rock, J. (2009). Adaptive forest management in central Europe: Climate change impacts strategies and integrative concept. Scandinavian Journal of Forest Research, 24(6), 473–482. https://doi.org/10.1080/02827580903418224
  • Bourdier, T., Cordonnier, T., Kunstler, G., Piedallu, C., Lagarrigues, G., Courbaud, B., & Gomory, D. (2016). Tree size inequality reduces forest productivity: An analysis combining inventory data for ten European species and a light competition model. PloS One, 11(3), e0151852. https://doi.org/10.1371/journal.pone.0151852
  • Burkhart, H. E., & Tomé, M. (2012). Modeling forest trees and stands. Germany. Springer Science & Business Media.
  • Calama, R., & Montero, G. (2005). Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): A calibrating approach. Silva Fennica, 39 (1) , 37–54. https://doi.org/10.14214/sf.394
  • Carnicer, J., Coll, M., Ninyerola, M., Pons, X., Sanchez, G., & Penuelas, J. (2011). Widespread crown condition decline food web disruption and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences, 108(4), 1474–1478. https://doi.org/10.1073/pnas.1010070108
  • Chen, G. D., Du, Y., Ding, P. Y., Guo, K. X., & Yin, Z. D. (2020). Predicting construction of single tree DBH of Picea schrenkiana in Xinjiang of northwestern China based on mixed effects model. Journal of Beijing Forestry University, 42(7), 12–22 https://doi.org/10.12171/j.1000-1522.20190236.
  • Chen, Y., Yang, X., Yang, Q., Li, D., Long, W., Luo, W., & Wang, T. (2014). Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island, China. PloS One, 9(5), e97751. https://doi.org/10.1371/journal.pone.0097751
  • Condés, S., & Sterba, H. (2008). Comparing an individual tree growth model for Pinus halepensis Mill. in the Spanish region of Murcia with yield tables gained from the same area. European Journal of Forest Research, 127(3), 253–261. https://doi.org/10.1007/s10342-007-0201-7
  • Copenhaver-Parry, P. E., & Cannon, E. (2016). The relative influences of climate and competition on tree growth along montane ecotones in the Rocky Mountains. Oecologia, 182(1), 13–25. https://doi.org/10.1007/s00442-016-3565-x
  • Cordonnier, T., & Kunstler, G. (2015). The Gini index brings asymmetric competition to light. Perspectives in Plant Ecology Evolution & Systematics, 17(2), 107–115. https://doi.org/10.1016/j.ppees.2015.01.001
  • Cudeck, R., & Klebe, K. J. (2002). Multiphase mixed-effects models for repeated measures data. Psychological Methods, 7(1), 41–63. https://doi.org/10.1037/1082-989X.7.1.41
  • Darlington, R. B. (1968). Multiple regression in psychological research and practice. Psychological Bulletin, 69(3), 161. https://doi.org/10.1037/h0025471
  • Eeley, H. A., Lawes, M. J., & Piper, S. E. (1999). The influence of climate change on the distribution of indigenous forest in KwaZulu‐Natal, South Africa. Journal of Biogeography, 26(3), 595–617. https://doi.org/10.1046/j.1365-2699.1999.00307.x
  • Flannigan, M. D., Stocks, B. J., & Wotton, B. M. (2000). Climate change and forest fires. Science of the Total Environment, 262(3), 221–229. https://doi.org/10.1016/S0048-9697(00)00524-6
  • Fu, L. Y., Sharma, R. P., Hao, K., & Tang, S. Z. (2017). A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China. Forest Ecology & Management, 389, 364–373. https://doi.org/10.1016/j.foreco.2016.12.034
  • Fu, L. Y., & Sun, H. (2013). Individual crown diameter prediction for Cunninghamia lanceolata forests based on mixed effects models. Scientia Silvae Sinicae, 49(8), 65–74. 10.11707/j.1001-7488.20130810.
  • Fu, L. Y., Tang, S. Z., Zhang, H. R., & Lei, X. D. (2015). Multilevel nonlinear mixed-effects basal area models for individual trees of Quercus mongolica. Forest Research, 28(1), 23–31. 10.13275/j.cnki.lykxyj.2015.01.004.
  • Garcia-Gonzalo, J., Marques, S., Borges, J., Botequim, B., Oliveira, M., Tomé, J., & Tomé, M. (2011). A three-step approach to post-fire mortality modelling in maritime pine (Pinus pinaster ait) stands for enhanced forest planning in Portugal. Forestry, 84(2), 197–206. https://doi.org/10.1093/forestry/cpr006
  • Gillett, N. P., Weaver, A. J., Zwiers, F. W., & Flannigan, M. D. (2004). Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31(18), L18211. https://doi.org/10.1029/2004GL020876
  • Gómez-aparicio, L., García-valdés, R., Ruíz-benito, P., & Zavala, M. A. (2011). Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: Implications for forest management under global change. Global Change Biology, 17(7), 2400–2414. https://doi.org/10.1111/j.1365-2486.2011.02421.x
  • González de Andrés, E., Camarero, J. J., Blanco, J. A., Imbert, J. B., Lo, Y.-H., Sangüesa-Barreda, G., Castillo, F. J., & Turnbull, M. (2017). Tree-to-tree competition in mixed European beech–Scots pine forests has different impacts on growth and water-use efficiency depending on site conditions. Journal of Ecology, 106 (1) , 59–75. https://doi.org/10.1111/1365-2745.12813
  • Grömping, U. (2006). Relative importance for linear regression in r: The package relaimpo. Journal of Statistical Software, 17(1), 925–933. https://doi.org/10.18637/jss.v017.i01
  • Hall, D. B., & Bailey, R. L. (2001). Modeling and prediction of forest growth variables based on multilevel nonlinear mixed models. Forest Science, 47 (3) , 311–321. https://doi.org/10.1093/forestscience/47.3.311
  • Han, P. W. (2020). Climate-sensitive diameter grade distribution model of Changbai larch (Larix olgensis) forests. Beijing Forestry University.
  • Hasenauer, H. (2006). Sustainable forest management: Growth models for Europe. Springer Science & Business Media.
  • Ho, K. Y., Ou, C. H., Yang, J. C., & Hsiao, J. Y. (2002). An assessment of DNA polymorphisms and genetic relationships of Casuarina equisetifolia using RAPD markers. Botanical Bulletin of Academia Sinica, 43(2), 93–98.
  • Hu, X. F., Duan, G. S., & Zhang, H. R. (2021). Modelling individual tree diameter growth of Quercus mongolica secondary forest in the northeast of China. Sustainability, 13 (8) , 4533. https://doi.org/10.3390/su13084533
  • Huang, G. N. (2015). Study on the reformation models of Casuarina equisetifolia plantation in daodong forestry farm in Hainan Province. Central South University of Forestry and Technology.
  • Huang, J. G., Stadt, K. J., Dawson, A., Comeau, P. G., & Auge, H. (2013). Modelling growth-competition relationships in trembling aspen and white spruce mixed boreal forests of western Canada. PloS One, 8(10), e77607. https://doi.org/10.1371/journal.pone.0077607
  • Huang, G. N., Xue, Y., Li, J. F., Wang, X. Y., Lin, Z. P., & Su, S. F. (2016). Study on the reformation models of Casuarina equisetifolia plantation in daodong forest farm of Hainan Province. Tropical Forestry, 44(4), 35–39. https://doi.org/10.3969/j.issn672-0938.2016.04.010
  • Latta, G., Temesgen, H., Adams, D., & Barrett, T. (2010). Analysis of potential impacts of climate change on forests of the United States Pacific Northwest. Forest Ecology & Management, 259(4), 729. https://doi.org/10.1016/j.foreco.2009.09.003
  • Lei, X. D., Wang, W. F., & Peng, C. H. (2009). Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Canadian Journal of Forest Research, 39(10), 1835–1847. https://doi.org/10.1139/X09-089
  • Lhotka, J. M. (2012). Height-diameter relationships in Sweetgum (Liquidambar styraciflua)- dominated stands. Southern Journal of Applied Forestry, 36(2), 98–106. https://doi.org/10.5849/sjaf.10-039
  • Li, C. M. (2012). Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models. Scientia Silvae Sinicae, 48(3), 66–73. https://doi.org/10.11707/j.1001-7488.20120311
  • Liang, J. J., Buongiorno, J., Monserud, R. A., Kruger, E. L., & Zhou, M. (2007). Effects of diversity of tree species and size on forest basal area growth recruitment and mortality. Forest Ecology & Management, 243(1), 116–127. https://doi.org/10.1016/j.foreco.2007.02.028
  • Lindeman, R. H., Merenda, P. F., & Gold, R. Z. (1980). Introduction to bivariate and multivariate analysis. Scott, Foresman and Company.
  • Linder, M. (2000). Developing adaptive forest management strategies to cope with climate change. Tree Physiology, 20(5–6), 299–307. https://doi.org/10.1093/treephys/20.5–6.299
  • Lindstrom, M.J., & Bates, D. M. (1990). Nonlinear mixed effects models for repeated measures data. Biometrics, 46(3), 673–687. https://doi.org/10.2307/2532087
  • Liu, S., Li, J. J., Qing, D. S., Zhu, K. W., & Ma, Z. Y. (2021). A climate-sensitive individual-tree DBH growth model for Cyclobalanopsis glauca. Scientia Silvae Sinicae, 57(1), 95–104. https://doi.org/10.11707/j.1001-7488.20210110
  • Liu, H. H., Zhao, Y. M., Wang, X. Y., Feng, Y. J., & Yang, W. (2008). Discussion of evaluation methods on soil fertility. Journal of Yangtze River Scientific Research Institute, 25(3), 62–66. https://doi.org/10.3969/j.issn.1001-5485.2008.03.016
  • Long, W., Yang, X., & Li, D. (2012). Patterns of species diversity and soil nutrients along a chronosequence of vegetation recovery in Hainan Island, South China. Ecological Research, 27(3), 561–568. https://doi.org/10.1007/s11284-011-0923-3
  • Lundqvist, L. (1994). Growth and competition in partially cut sub-alpine Norway spruce forests in northern Sweden. Forest Ecology & Management, 65(2–3), 115–122. https://doi.org/10.1016/0378-1127(94)90163-5
  • Ma, W., Lei, X. D., Xu, G., Yang, Y. J., & Wang, Q. J. (2015). Growth models for natural Quercus mongolica forests - I. Diameter growth model. Journal of Northwest A&F University, 43(2), 99–105. https://doi.org/10.13207/j.cnki.jnwafu.2015.02.011
  • Madrigal-González, J., Ruiz-Benito, P., Ratcliffe, S., Calatayud, J., Kändler, G., Lehtonen, A., Dahlgren, J., Wirth, C., & Zavala, M. A. (2016). Complementarity effects on tree growth are contingent on tree size and climatic conditions across Europe. Scientific Reports, 6(1), 638–646. https://doi.org/10.1038/srep32233
  • Marqués, L., Camarero, J. J., Zavala, M. A., Stoffel, M., Ballesteros-Cánovas, J. A., Sancho-García, C., & Madrigal-González, J. (2021). Evaluating tree-to-tree competition during stand development in a relict Scots pine forest: How much does climate matter? Trees, 35(4), 1207–1219. https://doi.org/10.1007/s00468-021-02109-8
  • McAlhaney, A. L., Keim, R. F., & Allen, S. T. (2020). Species-specific growth capacity for floodplain forest trees inferred from sapwood efficiency and individual tree competition. Forest Ecology & Management, 476, 118427. https://doi.org/10.1016/j.foreco.2020.118427
  • Medlyn, B. E., Duursma, R. A., & Zeppel, M. J. (2011). Forest productivity under climate change: A checklist for evaluating model studies. Wiley Interdisciplinary Reviews: Climate Change, 2(3), 332–355. https://doi.org/10.1002/wcc.108
  • Mei, G. Y., Sun, Y. J., Xu, H., Sergio, D. M., & Zang, R. (2015). A mixed-effects model with different strategies for modeling volume in Cunninghamia lanceolata plantations. PLoS One, 10(10), e0140095. https://doi.org/10.1371/journal.pone.0140095
  • Monserud, R. A., & Sterba, H. (1996). A basal area increment model for individual trees growing in even-and uneven-aged forest stands in Austria. Forest Ecology & Management, 80(1–3), 57–80. https://doi.org/10.1016/0378-1127(95)03638-5
  • Ndiaye, P., Mailly, D., Pineau, M., & Margolis, H. A. (1993). Growth and yield of Casuarina equisetifolia plantations on the coastal sand dunes of Senegal as a function of microtopography. Forest Ecology & Management, 56(1–4), 13–28. https://doi.org/10.1016/0378-1127(93)90100-2
  • Neumann, M., & Starlinger, F. (2001). The significance of different indices for stand structure and diversity in forests. Forest Ecology & Management, 145(1), 91–106. https://doi.org/10.1016/S0378-1127(00)00577-6
  • Noss, R. F. (2001). Beyond Kyoto: Forest management in a time of rapid climate change. Conservation Biology, 15(3), 578–590. https://doi.org/10.1046/j.1523-1739.2001.015003578.x
  • Ou, G. L., Wang, J. F., Xu, H., Chen, K. Y., Zheng, H. M., Zhang, B., Sun, X. L., Xu, T. T., & Xiao, Y. F. (2016). Incorporating topographic factors in nonlinear mixed-effects models for aboveground biomass of natural Simao pine in Yunnan, China. Journal of Forestry Research, 27(1), 119–131. https://doi.org/10.1007/s11676-015-0143-8
  • Ozdemir, I., Norton, D. A., Ozkan, U. Y., Mert, A., & Senturk, O. (2008). Estimation of tree size diversity using object oriented texture analysis and aster imagery. Sensors, 8(8), 4709–4724. https://doi.org/10.3390/s8084709
  • Parrotta, J. A. (1999). Productivity nutrient cycling and succession in single-and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta and Leucaena leucocephala in Puerto Rico. Forest Ecology & Management, 124(1), 45–77. https://doi.org/10.1016/S0378-1127(99)00049-3
  • Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x
  • Peng, W., Li, F. R., & Dong, L. H. (2018). Individual tree diameter growth model for Larix olgensis plantation in Heilongjiang Province, China. Journal of Nanjing Forestry University, 42(3), 19–27. https://doi.org/10.3969/j.issn.1000-2006.201711025
  • Pinheiro, J., & Bates, D. (2000). Mixed-effects models in s and s-plus. Springer.
  • Pinyopusarerk, K., & Williams, E. R. (2000). Range-wide provenance variation in growth and morphological characteristics of Casuarina equisetifolia grown in northern Australia. Forest Ecology & Management, 134(1), 219–232. https://doi.org/10.1016/S0378-1127(99)00260-1
  • Pokharel, B., & Dech, J. P. (2012). Mixed-effects basal area increment models for tree species in the boreal forest of Ontario, Canada using an ecological land classification approach to incorporate site effects. Forestry, 85(2), 255–270. https://doi.org/10.1093/forestry/cpr070
  • Porté, A., & Bartelink, H. H. (2002). Modelling mixed forest growth: A review of models for forest management. Ecological Modelling, 150(1), 141–188. https://doi.org/10.1016/S0304-3800(01)00476-8
  • Pratt, J. W. (1987). Dividing the indivisible: Using simple symmetry to partition variance explained. Proceedings of the Second International Tampere Conference in Statistics (pp. 245–260), Department of Mathematical Sciences University of Tampere, Tampere.
  • Qi, Z. T., Zhu, G. Y., Xu, B. B., Liu, H. N., & Lv, Y. (2021). Basal area growth model of Cunninghamia lanceolata plantation in Hunan Province with climate effect. Journal of Central South University of Forestry & Technology, 41(5), 66–73. https://doi.org/10.14067/j.cnki.1673-923x.2021.05.008
  • Robinson, A. P., & Hamann, J. D. (2010). Forest analytics with r: An introduction. Springer Science & Business Media.
  • Rollinson, C. R., Kaye, M. W., & Canham, C. D. (2016). Interspecific variation in growth responses to climate and competition of five eastern tree species. Ecology, 97(4), 1003–1011. https://doi.org/10.1890/15-1549.1
  • Sánchez-González, M., Del Río, M., Canellas, I., & Montero, G. (2006). Distance independent tree diameter growth model for cork oak stands. Forest Ecology & Management, 225(1), 262–270. https://doi.org/10.1016/j.foreco.2006.01.002
  • Schabenberger, O., & Gregoire, T. G. (1995). A conspectus on estimating function theory and its applicability to recurrent modeling issues in forest biometry. Silva Fennica, 29(1), 49-70. https://doi.org/10.14214/sf.a9197
  • Sharma, M., & Parton, J. (2007). Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology & Management, 249 (3) , 187–198. https://doi.org/10.1016/j.foreco.2007.05.006
  • Soares, A. A., Leite, H. G., Souza, A. L., Silva, S. R., Lourenço, H. M., & Forrester, D. I. (2016). Increasing stand structural heterogeneity reduces productivity in Brazilian eucalyptus monoclonal stands. Forest Ecology & Management, 373, 26–32. https://doi.org/10.1016/j.foreco.2016.04.035
  • Soja, A. J., Tchebakova, N. M., French, N. H. F., Flannigan, M. D., Stackhouse, P. W., Stocks, B. J., Sukhinin, A. I., Parfenova, E. I., Chapin, F. S., & Stackhouse, P. W. (2007). Climate-induced boreal forest change: Predictions versus current observations. Global and Planetary Change, 56 (3–4) , 274–296. https://doi.org/10.1016/j.gloplacha.2006.07.028
  • Sonia, C., & Fernando, G. (2012). An empirical mixed model to quantify climate influence on the growth of Pinus halepensis Mill. stands in South-Eastern Spain. Forest Ecology & Management, 284, 59–68. https://doi.org/10.1016/j.foreco.2012.07.030
  • Stocks, B. J., Fosberg, M. A., Lynham, T. J., Mearns, L., Wotton, B. M., Yang, Q., Jin, J. Z., Lawrence, K., Hartley, G. R., Mason, J. A., & Mckenney, D. W. (1998). Climate change and forest fire potential in Russian and Canadian boreal forests. Climatic Change, 38(1), 1–13. https://doi.org/10.1023/A:1005306001055
  • Subedi, N., & Sharma, M. (2013). Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada. Global Change Biology, 19(2), 505–516. https://doi.org/10.1111/gcb.12033
  • Torrey, J. G., & Racette, S. (1989). Specificity among the Casuarinaceae in root nodulation by Frankia. Plant and Soil, 118(1–2), 157–164. https://doi.org/10.1007/BF02232802
  • Uzoh, F. C. C., & Oliver, W. W. (2006). Individual tree height increment model for managed even-aged stands of ponderosa pine throughout the western United States using linear mixed effects models. Forest Ecology & Management, 221(1), 147–154. https://doi.org/10.1016/j.foreco.2005.09.012
  • Uzoh, F. C. C., & Oliver, W. W. (2008). Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model. Forest Ecology & Management, 256(3), 438–445. https://doi.org/10.1016/j.foreco.2008.04.046
  • Vonesh, E. F., & Chinchilli, V. M. (1997). Linear and nonlinear models for the analysis of repeated measurements. Marcel Dekker Inc.
  • Wang, S. J., Deng, H. F., Xiang, W., Huang, G. S., & Wang, X. J. (2018). Establishment of prediction model of Pinus tabulaeformis stand volume based on hybrid model. Journal of Northwest A&F University (Natural Science Edition), 46(2), 29–38, 46. https://doi.org/10.13207/j.cnki.jnwafu.2018.02.005
  • Wang, L., Feng, J. X., & Wang, X. C. (2013). Effects of soil thickness on dry-season water relations and growth in Robinia pseudoacacia. Chinese Journal of Plant Ecology, 37(3), 248–255. https://doi.org/10.3724/SP.J.1258.2013.00025
  • Wang, T., Wang, G., Innes, J. L., Seely, B., & Chen, B. (2017). ClimateAP: An application for dynamic local down scaling of historical and future climate data in Asia Pacific. Frontiers of Agricultural Science and Engineering, 4(4), 448–458. https://doi.org/10.15302/J-FASE-2017172
  • Wang, J. J., Zeng, W. S., & Meng, J. H. (2017). Individual-tree basal area growth model for Cunninghamia lanceolata with the consideration of thinning and tree mortality in the prediction interval. Journal of Northwest Forestry University, 32(3), 181–185. https://doi.org/10.3969/j.issn.1001-7461.2017.03.34
  • Weiskittel, A. R., Hann, D. W., Kershaw, J. A., Jr, & Vanclay, J. K. (2011). Forest growth and yield modeling. John Wiley & Sons Ltd. Publication.
  • West, P. W. (2009). Tree and forest measurement. Springer.
  • Wykoff, W. R. (1990). A basal area increment model for individual conifers in the northern Rocky Mountains. Forest Science, 36(4), 1077–1104.
  • Xu, Z. H., Chen, C. R., He, J. Z., & Liu, J. X. (2009). Trends and challenges in soil research 2009: Linking global climate change to local long-term forest productivity. Journal of Soils and Sediments, 9(2), 83–88. https://doi.org/10.1007/s11368-009-0060-6
  • Xu, H., Sun, Y. J., Wang, X. J., Wang, J., & Fu, Y. (2015). Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian Province, southern China. PLoS One, 10(4), https://doi.org/10.1093/forestscience/36.4.1077
  • Yang, Y., Huang, S., Meng, S. X., Trincado, G., & Vanderschaaf, C. L. (2009). A multilevel individual tree basal area increment model for aspen in boreal mixed wood stands. Canadian Journal of Forest Research, 39 (11) , 2203–2214. https://doi.org/10.1139/X09-123
  • Ye, G. F., & Xie, Z. X. (1993). Study on renovation and transformation of Casuarina protection forest in coastal zones of south China. Journal of Zhejiang Forestry and Technology, 13(1), 60–63.
  • Young, B., Liang, J., & Chapin, F. S. (2011). Effects of species and tree size diversity on recruitment in the Alaskan boreal forest: A geospatial approach. Forest Ecology & Management, 262(8), 1608–1617. https://doi.org/10.1016/j.foreco.2011.07.011
  • Yuan, J. L. (1999). Growth and yield models for dahurian larch plantations. Journal of Forestry Research, 10(4), 233–235. https://doi.org/10.1007/BF02855462
  • Zenner, E. K. (2000). Do residual trees increase structural complexity in pacific northwest coniferous forests? Ecological Applications, 10(3), 800–810. https://doi.org/10.1890/1051-0761(2000)010[0800:DRTISC]2.0.CO;2
  • Zhang, H. P. (2017). Individual tree diameter increment model for natural Betula platyphylla forests based on meteorological factors. Northeast forestry university.
  • Zhang, M. X., Fellowes, J. R., Jiang, X. L., Wang, W., Chan, B. P. L., Ren, G. P., & Zhu, J. G. (2010). Degradation of tropical forest in Hainan, China 1991–2008: Conservation implications for Hainan gibbon (Nomascus hainanus). Biological Conservation, 143 (6) , 1397–1404. https://doi.org/10.1016/j.biocon.2010.03.014
  • Zhang, S. S., Lin, W. X., Ye, G. F., Xu, J. S., & Tan, F. L. (2000). Studies on raising the effect of Casuarina equisetifolia afforestation on the sandy land in the draught in the coastal zone. Scientia Silvae Sinicae, 36(6), 39–46.
  • Zhang, Z. C., Papaik, M. J., Wang, X. G., Hao, Z. Q., Ye, J., Lin, F., & Yuan, Z. Q. (2016). The effect of tree size neighborhood competition and environment on tree growth in an old-growth temperate forest. Journal of Plant Ecology, 10(6), 970–980. https://doi.org/10.1093/jpe/rtw126
  • Zhang, Y., Zhong, C. L., Chen, Y., Chen, Z., Jiang, Q. B., Wu, C., & Pinyopusarerk, K. (2010). Improving drought tolerance of Casuarina equisetifolia seedlings by Arbuscular mycorrhizas under glasshouse conditions. New Forests, 40(3), 261–271. https://doi.org/10.1007/s11056-010-9198-8
  • Zhao, D. H., Borders, B., & Wilson, M. (2004). Individual-tree diameter growth and mortality models for bottomland mixed-species hardwood stands in the lower Mississippi alluvial valley. Forest Ecology & Management, 199(2), 307–322. https://doi.org/10.1016/j.foreco.2004.05.043
  • Zhao, L. F., Li, C. M., & Tang, S. Z. (2013). Individual-tree diameter growth model for fir plantations based on multi-level linear mixed effects models across southeast China. Journal of Forest Research, 18(4), 305–315. https://doi.org/10.1007/s10310-012-0352–3
  • Zhong, C. L., & Zhang, Y. (2003). Introduction cultivation and management of Casuarina equisetifolia in China. China Forest Science and Technology, 17 (2) , 3–5. https://doi.org/10.3969/j.issn.1000-8101.2003.02.001
  • Zhong, C. L., Zhang, Y., Chen, Y., Jiang, Q. B., Chen, Z., Liang, J. F., Pinyopusarerk, K., Franche, C., & Bogusz, D. (2010). Casuarina research and applications in China. Symbiosis, 50(1), 107–114. https://doi.org/10.1007/s13199-009-0039-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.