339
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Variation in Carbon Sequestration and Soil Properties in Relation to Stand Age in Maple and Alder Plantations

, , , , &

References

  • Allison, L. E. (1975). Organic carbon. In C. A. Black (Ed.), Methods of soil analysis, part 2 (pp. 1367). American Society of Agronomy.
  • Anonymous (1990) Kjeltek System 1902 Manual. TECATORAB, Hoganas
  • Anonymous. (1996). Forest management plan of darabkola forest. Rangeand Watershed Management Organization of Iran. Published by Forests.
  • Asadiyan, M., Hojjati, S. M., Pourmajidian, M. R., & Fallah, A. (2013). Impact of land-use management on nitrogen transformation in a mountain forest ecosystem in the north of Iran. Journal of Forestry Research, 24(1), 115–119. https://doi.org/10.1007/s11676-012-0291-z
  • Berthrong, S. T., Jobbágy, E. G., & Jackson, R. B. (2009). A global meta‐analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications, 19(8), 2228–2241. https://doi.org/10.1890/08-1730.1
  • Bower, C. A., Reitemeier, R. F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73(4), 251–261. https://doi.org/10.1097/00010694-195204000-00001
  • Brasher, B. R., Franzmeier, D. P., Valassis, V., & Davidson, S. E. (1966). Use of saran resin to coat natural soil clods for bulk-density and water-retention measurements. Soil Science, 101(2), 108. https://doi.org/10.1097/00010694-196602000-00006
  • Brown SL, Schroeder P, Kern JF. 1999. Spatial distribution of biomass in forests of the eastern USA. Forest Ecol Manag. 123:81–90.
  • Bunker, D. E., DeClerck, F., Bradford, J. C., Colwell, R. K., Perfecto, I., Phillips, O. L., Sankaran, M., & Naeem, S. (2005). Species loss and aboveground carbon storage in a tropical forest. Science, 310(5750), 1029–1031. https://doi.org/10.1126/science.1117682
  • Cao, J., Zhang, X., Deo, R., Gong, Y., & Feng, Q. (2018). Influence of stand type and stand age on soil carbon storage in China’s arid and semi-arid regions. Land Use Policy, 78(2018), 258–265. https://doi.org/10.1016/j.landusepol.2018.07.002
  • Chen, Y., Chen, L., Cheng, Y., Ju, W., Chen, H. Y., & Ruan, H. (2020). Afforestation promotes the enhancement of forest LAI and NPP in China. Forest Ecology and Management, 462, 117990. https://doi.org/10.1016/j.foreco.2020.117990
  • Cheng, X., Han, H., Kang, F., Song, Y., & Liu, K. (2014). Variation in biomass and carbon storage by stand age in pine (Pinus tabulaeformis) planted ecosystem in Mt. Taiyue, Shanxi, China. Journal of Plant Interactions, 9(1), 521–528. https://doi.org/10.1080/17429145.2013.862360
  • Chu, X., Zhan, J., Li, Z., Zhang, F., & Qi, W. (2019). Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. Journal of Cleaner Production, 215, 382–389. https://doi.org/10.1016/j.jclepro.2018.12.296
  • Cottenie, A. (1980). Soil and Plant Testing and Analysis as a Basis of Fertilizer Recommendation, F.A.O. Soils Bulletin, 38(295). https://www.cabdirect.org/cabdirect/abstract/19806734748
  • Davidson, E. A., Savage, K., Bolstad, P., Clark, D. A., Curtis, P. S., Ellsworth, D. S., Hanson, P. J., Law, B. E., Luo, Y., Pregitzer, K. S., Randolph, J. C., & Zak, D. (2002). Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology, 113(1–4), 39–51. https://doi.org/10.1016/S0168-1923(02)00101-6
  • Davis, M. R., Allen, R. B., & Clinton, P. W. (2003). Carbon storage along a stand development sequence in a New Zealand Nothofagus forest. Forest Ecology and Management, 177(1–3), 313–321. https://doi.org/10.1016/S0378-1127(02)00333-X
  • De Schrijver, A., De Frenne, P., Staelens, J., Verstraeten, G., Muys, B., Vesterdal, L., Wuyts, K., Nevel, L., Schelfhout, S., Neve, S., & Verheyen, K. (2012). Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Global Change Biology, 18(3), 1127–1140. https://doi.org/10.1111/j.1365-2486.2011.02572.x
  • Detwiler, R. P. (1986). Land use change and the global carbon cycle: The role of tropical soils. Biogeochemistry, 2(1), 67–93. https://doi.org/10.1007/BF02186966
  • Gong, Z., O’Hara, K. L., Li, W., & Gu, L. (2019). Optimal forest rotation periods: Integrating timber production and carbon sequestration benefits in Pinus tabulaeformis plantations on the Loess Plateau, PR China. Journal of Sustainable Forestry, 38(6), 591–613. https://doi.org/10.1080/10549811.2019.1598442
  • Goulden, M.L., McMillan, A.M.S., Winston, G.C., Rocha, A.V., Manies, K.L., Harden, J.W. and Bond‐Lamberty, B.P., 2011. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biology, 17(2), pp.855–871
  • Han, X., Zhao, F., Tong, X., Deng, J., Yang, G., Chen, L., & Kang, D. (2017). Understanding soil carbon sequestration following the afforestation of former arable land by physical fractionation. Catena, 150, 317–327. https://doi.org/10.1016/j.catena.2016.11.027
  • Hassink, J. (1997). The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil, 191(1), 77–87. https://doi.org/10.1023/A:1004213929699
  • Hojjati, S. M., Darzi, A., Asadi, H., & Tafazoli, M. (2021). Changes in soil properties and plant biodiversity after 12 years of rehabilitating livestock farms in the Hyrcanian forests. Agroforestry Systems, 95(8), 1493–1053. https://doi.org/10.1007/s10457-021-00658-y
  • Hojjati, S. M., & Lamersdorf, N. P. (2010). Effect of canopy composition on soil CO2 emission in a mixed spruce beech forest at Solling, Central Germany. Journal of Forestry Research, 21(4), 461–464. https://doi.org/10.1007/s11676-010-0098-8
  • Hong, S., Piao, S., Chen, A., Liu, Y., Liu, L., Peng, S., Sardans, J., Sun, Y., Peñuelas, J., & Zeng, H. (2018). Afforestation neutralizes soil pH. Nature Communications, 9(1), 1–7. https://doi.org/10.1038/s41467-018-02970-1
  • Imhoff, S., Da Silva, A. P., & Fallow, D. (2004). Susceptibility to compaction, load support capacity, and soil compressibility of Hapludox. Soil Science Society of America Journal, 68(1), 17–24. https://doi.org/10.2136/sssaj2004.1700
  • Jackson, M., Ford-Lloyd, B., & Parry, M. (Eds.). (2013). Plant genetic resources and climate change (Vol. 4). Centre for Agriculture and Bioscience International.
  • Jones, I. L., DeWalt, S. J., Lopez, O. R., Bunnefeld, L., Pattison, Z., & Dent, D. H. (2019). Above-and belowground carbon stocks are decoupled in secondary tropical forests and are positively related to forest age and soil nutrients respectively. Science of the Total Environment, 697, 133987. https://doi.org/10.1016/j.scitotenv.2019.133987
  • Justine, M. F., Yang, W., Wu, F., Tan, B., Khan, M. N., & Zhao, Y. (2015). Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze River. Forests, 6(10), 3665–3682. https://doi.org/10.3390/f6103665
  • Kooch, Y., Hosseini, S. M., Zaccone, C., Jalilvand, H., & Hojjati, S. M. (2012). Soil organic carbon sequestration as affected by afforestation: The Darab Kola forest (North of Iran) case study. Journal of Environmental Monitoring, 14(9), 2438–2446. https://doi.org/10.1039/c2em30410d
  • Korkanç, S. Y. (2014). Effects of afforestation on soil organic carbon and other soil properties. Catena, 123, 62–69. https://doi.org/10.1016/j.catena.2014.07.009
  • Krause, A., Pugh, T. A., Bayer, A. D., Li, W., Leung, F., Bondeau, A., Doelman, J. C., Humpenöder, F., Anthoni, P., Bodirsky, B. L., Ciais, P., Müller, C., Murray-Tortarolo, G., Olin, S., Popp, A., Sitch, S., Stehfest, E., & Arneth, A. (2018). Large uncertainty in carbon uptake potential of land‐based climate‐change mitigation efforts. Global Change Biology, 24(7), 3025–3038. https://doi.org/10.1111/gcb.14144
  • Liu, L., Wang, H., & Dai, W. (2019). Characteristics of soil organic carbon mineralization and influence factor analysis of natural Larix olgensis forest at different ages. Journal of Forestry Research, 30(4), 1495–1506. https://doi.org/10.1007/s11676-018-0724-4
  • Lu, X., Vitousek, P. M., Mao, Q., Gilliam, F. S., Luo, Y., Zhou, G., Zou, X., Bai, E., Scanlon, T. M., Hou, E., & Mo, J. (2018). Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proceedings of the National Academy of Sciences, 115(20), 5187–5192. https://doi.org/10.1073/pnas.1720777115
  • Mesdaghi, M., 2006. Plant Ecology. Publication SID-Mashhad (187 p).
  • Namiranian, M. (2007). Measurement of tree and forest biometry (1st Edn ed.). Tehran University Publications.
  • Ngaba, M. J. Y., Ma, X. Q., & Hu, Y. L. (2020). Variability of soil carbon and nitrogen stocks after conversion of natural forest to plantations in Eastern China. PeerJ, 8, e8377. https://doi.org/10.7717/peerj.8377
  • NOAA. (2021). National Oceanic and Atmospheric Administration, US. 356. September 2021. from https://www.esrl.noaa.gov/gmd/ccgg/trends
  • Nobakht, A. A., Hojjati, S. M., Pourmjidian, M. R., & Khorrami, R. A. (2018). Investigation on livestock presence in forest on plant biodiversity and soil properties in Zalemroud, Neka, Mazandaran province. Iranian Journal for Poplar Research, 26(3), 382–392. https://dx.doi.org/10.22092/ijfpr.2018.117741
  • Nobakht, A., Pourmajidian, M., & Hojjati, S. M. (2011). A comparison of soil carbon sequestration in hardwood and softwood monocultures (case study: Dehmian Forest Management Plan, Mazindaran). Iranian Journal of Forest, 3(1), 13–23.
  • Nordén, U. (1994). Influence of broad‐leaved tree species on pH and organic matter content of forest topsoils in Scania, South Sweden. Scandinavian Journal of Forest Research, 9(1–4), 1–8. https://doi.org/10.1080/02827589409382806
  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Government Printing Office. USDA Circular 030.
  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993. https://doi.org/10.1126/science.1201609
  • Pan, Y., Luo, T., Birdsey, R., Hom, J., & Melillo, J. (2004). New estimates of carbon storage and sequestration in China’s forests: Effects of age–class and method on inventory-based carbon estimation. Climatic Change, 67(2), 211–236. https://doi.org/10.1007/s10584-004-2799-5
  • Parsapajouh, D. (2015). Wood Technology Tehran. University of Tehran. 404.
  • Paul, K. I., Polglase, P. J., Nyakuengama, J. G., & Khanna, P. K. (2002). Change in soil carbon following afforestation. Forest Ecology and Management, 168(1–3), 241–257. https://doi.org/10.1016/S0378-1127(01)00740-X
  • Powers, J. S., & Marín-Spiotta, E. (2017). Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annual Review of Ecology, Evolution, and Systematics, 48(1), 497–519. https://doi.org/10.1146/annurev-ecolsys-110316-022944
  • Pregitzer, K. S., & Euskirchen, E. S. (2004). Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology, 10(12), 2052–2077. https://doi.org/10.1111/j.1365-2486.2004.00866.x
  • Quiroga, A. R., Buschiazzo, D. E., & Peinemann, N. (1996). Soil organic matter particle size fractions in soils of the semiarid Argentinian Pampas. Soil Science, 161(2), 104–108. https://doi.org/10.1097/00010694-199602000-00004
  • Rawlins, B. G., Henrys, P., Breward, N., Robinson, D. A., Keith, A. M., & Garcia‐Bajo, M. (2011). The importance of inorganic carbon in soil carbon databases and stock estimates: A case study from England. Soil Use and Management, 27(3), 312–320. https://doi.org/10.1111/j.1475-2743.2011.00348.x
  • Rukshana, F., Butterly, C. R., Baldock, J. A., & Tang, C. (2011). Model organic compounds differ in their effects on pH changes of two soils differing in initial pH. Biology and Fertility of Soils, 47(1), 51–62. https://doi.org/10.1007/s00374-010-0498-0
  • Sagheb-Talebi, K., Pourhashemi, M., & Sajedi, T. (2014). Forests of Iran: A treasure from the past, a hope for the future. Springer.
  • Sartori, F., Lal, R., Ebinger, M. H., & Eaton, J. A. (2007). Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agriculture, Ecosystems & Environment, 122(3), 325–339. https://doi.org/10.1016/j.agee.2007.01.026
  • Schlesinger, W. H., Raikes, J. A., Hartley, A. E., & Cross, A. F. (1995). On the spatial pattern of soil nutrients in desert ecosystems: Ecological archives E077-002. Ecology, 77(2), 364–374. https://doi.org/10.2307/2265615
  • Sierra, C. A., Del Valle, J. I., Orrego, S. A., Moreno, F. H., Harmon, M. E., Zapata, M., Colorado, G. J., Herrera, M. A., Lara, W., Restrepo, D. E., Berrouet, L. M., Loaiza, L. M., & Benjumea, J. F. (2007). Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management, 243(2–3), 299–309. https://doi.org/10.1016/j.foreco.2007.03.026
  • Singh, B. (Ed.). (2018). Soil carbon storage: Modulators, mechanisms and modeling. Academic Press.
  • Six, J., Callewaert, P., Lenders, S., De Gryze, S., Morris, S. J., Gregorich, E. G., Paul, E. A., & Paustian, K. (2002). Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal, 66(6), 1981–1987. https://doi.org/10.2136/sssaj2002.1981
  • Stephenson, N. L., Das, A. J., Condit, R., Russo, S. E., Baker, P. J., Beckman, N. G., Coomes, D. A., Lines, E. R., Morris, W. K., Rüger, N., Álvarez, E., Blundo, C., Bunyavejchewin, S., Chuyong, G., Davies, S. J., Duque, Á., Ewango, C. N., Flores, O., Franklin, J. F., … Zavala, M. A. (2014). Rate of tree carbon accumulation increases continuously with tree size. Nature, 507(7490), 90–93. https://doi.org/10.1038/nature12914
  • Tafazoli, M., Hojjati, S. M., Jalilvand, H., Lamersdorf, N., & Tafazoli, M. (2021). Effect of nitrogen addition on soil CO2 efflux and fine root biomass in maple monocultures of the hyrcanian region. Annals of Forest Science, 78(2), 1–11. https://doi.org/10.1007/s13595-021-01050-7
  • Usuga, J. C. L., Toro, J. A. R., Alzate, M. V. R., & Tapias, Á. D. J. L. (2010). Estimation of biomass and carbon stocks in plants, soil and forest floor in different tropical forests. Forest Ecology and Management, 260(10), 1906–1913. https://doi.org/10.1016/j.foreco.2010.08.040
  • Vahedi, A. A., Mataji, A., Babayi-Kafaki, S., Eshaghi-Rad, J., Hodjati, S. M., & Djomo, A. (2014). Allometric equations for predicting aboveground biomass of beech-hornbeam stands in the Hyrcanian forests of Iran. Journal of Forest Science, 60(6), 236–247. https://doi.org/10.17221/39/2014-JFS
  • Wang, Q. K., Wang, S. L., Feng, Z. W., & Huang, Y. (2005). Active soil organic matter and its relationship with soil quality. Acta Ecologica Sinica, 25(3), 513–519.
  • Wang, D., Wang, B., & Niu, X. (2014). Forest carbon sequestration in China and its benefits. Scandinavian Journal of Forest Research, 29(1), 51–59. https://doi.org/10.1080/02827581.2013.856936
  • Wei, Y., Li, M., Chen, H., Lewis, B. J., Yu, D., Zhou, L., Dai, L., Zhao, W., Dai, L., & Zhou, W. (2013). Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in northeastern China. PLoS One, 8(8), e72201. https://doi.org/10.1371/journal.pone.0072201
  • Weil, R. R., & Brady, N. C. (2016). The nature and properties of soils. In Columbus. Pearson. London, UK, pp. 1063.
  • Weiskittel, A. R., Hann, D. W., Kershaw, J. A., Jr, & Vanclay, J. K. (2011). Forest growth and yield modeling. John Wiley & Sons.
  • Wu, G. L., Liu, Y., Tian, F. P., & Shi, Z. H. (2017). Legumes functional group promotes soil organic carbon and nitrogen storage by increasing plant diversity. Land Degradation & Development, 28(4), 1336–1344. https://doi.org/10.1002/ldr.2570
  • Xu, X., & Li, K. (2010). Biomass carbon sequestration by planted forests in China. Chinese Geographical Science, 20(4), 289–297. https://doi.org/10.1007/s11769-010-0401-9
  • Yen, T. M., Huang, K. L., Li, L. E., & Wang, C. H. (2020). Assessing carbon sequestration in plantation forests of important conifers based on the system of permanent sample plots across Taiwan. Journal of Sustainable Forestry, 39(4), 392–406. https://doi.org/10.1080/10549811.2019.1673181
  • Yesilonis, I., Szlavecz, K., Pouyat, R., Whigham, D., & Xia, L. (2016). Historical land use and stand age effects on forest soil properties in the Mid-Atlantic US. Forest Ecology and Management, 370, 83–92. https://doi.org/10.1016/j.foreco.2016.03.046
  • Yin, X., Zhao, L., Fang, Q., & Ding, G. (2021). Differences in soil physicochemical properties in different-aged pinus massoniana plantations in Southwest China. Forests, 12(8), 987. https://doi.org/10.3390/f12080987
  • Zeng, X., Zhang, W., Cao, J., Liu, X., Shen, H., & Zhao, X. (2014). Changes in soil organic carbon, nitrogen, phosphorus, and bulk density after afforestation of the “Beijing–Tianjin Sandstorm Source Control” program in China. Catena, 118, 186–194. https://doi.org/10.1016/j.catena.2014.01.005
  • Zhang, C. X., Hao, M. D., & Xie, B. C. (2006). Effect of application amounts of different chemical fertilizers on soil carbon pool [J]. Chinese Journal of Soil Science, 37(5), 861–864. http://caod.oriprobe.com/articles/10934360/Effect_of_Application_Amounts_of_Different_Chemical_Fertilizers_on_Soi.htm
  • Zhang, J., Shangguan, T., & Meng, Z. (2011). Changes in soil carbon flux and carbon stock over a rotation of poplar plantations in northwest China. Ecological Research, 26(1), 153–161. https://doi.org/10.1007/s11284-010-0772-5
  • Zhou, L., Li, B., & Zhou, G. (2005). Advances in controlling factors of soil organic carbon. Advances in Earth Science, 20(1), 99–105.
  • Zobeiry, M. (2000). Forest inventory (Measurement of tree and stand) (1st Edn ed.). Tehran University Publisher.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.