Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 35, 2017 - Issue 4
562
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Exploring the activities of ruthenium nanomaterials as reactive oxygen species scavengers

, , , , &

References

  • Cotgreave IA, Orrenius S. Reactive oxygen species in biological systems—An interdisciplinary approach. Science. 1999;284:1935–1936. doi:10.1126/science.284.5422.1935b.
  • Noubade R, Wong K, Ota N, Rutz S, Eidenschenk C, Valdez PA, Ding J, Peng I, Sebrell A, Caplazi P, DeVoss J, Soriano RH, Sai T, Lu R, Modrusan Z, Hackney J, Ouyang W. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature. 2014; 509:235–239. doi:10.1038/nature13152.
  • Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science. 1988;240:1302–1309. doi:10.1126/science.3287616.
  • Shahidi F, Zhong Y. Lipid oxidation and improving the oxidative stability. Chem Soc Rev. 2010;39:4067–4079. doi:10.1039/b922183m.
  • Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A. Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med. 2006;10:389–406. doi:10.1111/j.1582-4934.2006.tb00407.x.
  • Zhang H, Pokhrel S, Ji Z, Meng H, Wang X, Lin S, Chang CH, Li L, Li R, Sun B, Wang M, Liao YP, Liu R, Xia T, Mädler L, Nel AE. PdO doping tunes band-gap energy levels as well as oxidative stress responses to a Co3O4 p-type semiconductor in cells and the lung. J Am Chem Soc. 2014;136:6406−6420. doi:10.1021/ja501699e.
  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal. 2014;22:64–75. doi:10.1016/j.jfda.2014.01.005.
  • Wu H, Yin JJ, Wamer WG, Zeng M, Lo YM. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal. 2014;22:86–94. doi:10.1016/j.jfda.2014.01.007.
  • Fu PP. Introduction to the special issue: nanomaterials—toxicology and medical applications. J Food Drug Anal. 2014;22:1–2. doi:10.1016/j.jfda.2014.01.013.
  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Jr., Rejeski D, Hull MS. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 2015;6:1769–1780. doi:10.3762/bjnano.6.181.
  • Jones S, Pramanik A, Sweet C, Keyes A, Begum S, Vangra A, Yu H, Fu PP, Ray PC. Recent progress on the development of anisotropic gold nanoparticles: design strategies and growth mechanism. J Environ Sci Health, Part C. 2017;35:47–66. doi:10.1080/10590501.2017.1280264.
  • Zhang W, Hu S, Yin JJ, He W, Lu W, Ma M, Gu N, Zhang Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc. 2016;138:5860–5865. doi:10.1021/jacs.5b12070.
  • Aioub M, Panikkanvalappil SR, El-Sayed MA. Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy. ACS Nano. 2017;11:579−586. doi:10.1021/acsnano.6b06651.
  • Yoshitomi T, Nagasaki Y. Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries. Adv Healthcare Mater. 2014;3:1149–1161. doi:10.1002/adhm.201300576.
  • Gao N, Dong K, Zhao A, Sun H, Wang Y, Ren J, Qu X. Polyoxometalate-based nanozyme: design of a multifunctional enzyme for multi-faceted treatment of Alzheimer's disease. Nano Res. 2016;9:1079–1090. doi:10.1007/s12274-016-1000-6.
  • Lord MS, Jung M, Teoh WY, Gunawan C, Vassie JA, Amal R, Whitelock JM. Cellular uptake and reactive oxygen species modulation of cerium oxide nanoparticles in human monocyte cell line U937. Biomaterials. 2012;33:7915–7924. doi:10.1016/j.biomaterials.2012.07.024.
  • Li J, Guan M, Wang T, Zhen M, Zhao F, Shu C, Wang C. Gd@C82-(ethylenediamine)8 nanoparticle: a new high-efficiency water-soluble ROS scavenger. ACS Appl Mater Interfaces. 2016;8:25770−25776. doi:10.1021/acsami.6b08659.
  • Zhang Y, Shareena Dasari TP, Deng H, Yu H. Antimicrobial activity of gold nanoparticles and ionic gold. J Environ Sci Health, Part C. 2015;33:286–327. doi:10.1080/10590501.2015.1055161.
  • McShan D, Zhang Y, Deng H, Ray PC, Yu H. Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant Salmonella typhimurium DT104. J Environ Sci Health, Part C. 2015;33:369–384. doi:10.1080/10590501.2015.1055165.
  • Lin Y, Ren J, Qu X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res. 2014;47:1097–1105. doi:10.1021/ar400250z.
  • He W, Wamer W, Xia Q, Yin JJ, Fu PP. Enzyme-like activity of nanomaterials. J Environ Sci Health, Part C. 2014;32:186–211. doi:10.1080/10590501.2014.907462.
  • Li Y, He X, Yin JJ, Ma Y, Zhang P, Li J, Ding Y, Zhang J, Zhao Y, Chai Z, Zhang Z. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew Chem Int Ed. 2015;54:1832–1835. doi:10.1002/anie.201410398.
  • Broering EP, Truong PT, Gale EM, Harrop TC. Synthetic analogues of nickel superoxide dismutase: a new role for nickel in biology. Biochemistry. 2013;52:4–18. doi:10.1021/bi3014533.
  • Mu J, Zhao X, Li J, Yang EC, Zhao XJ. Novel hierarchical NiO nanoflowers exhibiting intrinsic superoxide dismutase-like activity. J Mater Chem B. 2016;4:5217–5221. doi:10.1039/C6TB01390B.
  • Song Y, Qu K, Zhao C, Ren J, Qu X. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22:2206–2210. doi:10.1002/adma.200903783.
  • Lin Y, Ren J, Qu X. Nano-gold as artificial enzymes: hidden talents. Adv Mater. 2014;26:4200–4217. doi:10.1002/adma.201400238.
  • He W, Han X, Jia H, Cai J, Zhou Y, Zheng Z, AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci Rep. 2017;7:40103. doi:10.1038/srep40103.
  • Liu Y, Wu H, Li M, Yin JJ, Nie Z. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale. 2014;6:11904–11910. doi:10.1039/C4NR03848G.
  • Ge C, Fang G, Shen X, Chong Y, Wamer WG, Gao X, Chai Z, Chen C, Yin JJ. Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano. 2016;10:10436–10445. doi:10.1021/acsnano.6b06297.
  • Xia X, Zhang J, Lu N, Kim MJ, Ghale K, Xu Y, McKenzie E, Liu J, Ye H. Pd–Ir core–shell nanocubes: a type of highly efficient and versatile peroxidase mimic. ACS Nano. 2015;9:9994–10004. doi:10.1021/acsnano.5b03525.
  • Su H, Liu DD, Zhao M, Hu WL, Xue SS, Cao Q, Le XY, Ji LN, Mao ZW. Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl Mater Interfaces. 2015;7:8233–8242. doi:10.1021/acsami.5b01271.
  • Li J, Cai J, Jia H, Zhang L, Lei Y, He W, Yin JJ. Formation of iron oxide/Pd hybrid nanostructures with enhanced peroxidase-like activity and catalytic reduction of 4-nitrophenol. J Environ Sci Health, Part C. 2017;35:159–172. doi:10.1080/10590501.2017.1328839.
  • Zhu L, Jiang Y, Zheng J, Zhang N, Yu C, Li Y, Pao CW, Chen J-L, Jin C, Lee JF, Zhong CJ, Chen BH. Ultrafine nanoparticle-supported Ru nanoclusters with ultrahigh catalytic activity. Small. 2015;11:4385–4393. doi:10.1002/smll.201500654.
  • Li WZ, Liu JX, Gu J, Zhou W, Yao SY, Si R, Guo Y, Su HY, Yan CH, Li WX, Zhang YW, Ma D. Chemical insights into the design and development of face-centered cubic ruthenium catalysts for Fischer–Tropsch synthesis. J Am Chem Soc. 2017;139:2267–2276. doi:10.1021/jacs.6b10375.
  • Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y, Jaroniec M, Qiao SZ. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J Am Chem Soc. 2016;138:16174−16181. doi:10.1021/jacs.6b11291.
  • Mitsudome T, Takahashi Y, Mizugaki T, Jitsukawa K, Kaneda K. Hydrogenation of sulfoxides to sulfides under mild conditions using ruthenium nanoparticle catalysts. Angew Chem Int Ed. 2014;53:8348–8351. doi:10.1002/anie.201403425.
  • Luska KL, Migowski P, El Sayed S, Leitner W. Synergistic interaction within bifunctional ruthenium nanoparticle/SILP catalysts for the selective hydrodeoxygenation of phenols. Angew Chem Int Ed. 2015;54:15750–15755. doi:10.1002/anie.201508513.
  • Ye R, Liu Y, Peng Z, Wang T, Jalilov AS, Yakobson BI, Wei SH, Tour JM. High performance electrocatalytic reaction of hydrogen and oxygen on ruthenium nanoclusters. ACS Appl Mater Interfaces. 2017;9:3785−3791. doi:10.1021/acsami.6b15725.
  • Zhou Y, Yu Q, Qin X, Bhavsar D, Yang L, Chen Q, Zheng W, Chen L, Liu J. Improving the anticancer efficacy of laminin receptor-specific therapeutic ruthenium nanoparticles (RuBB-Loaded EGCG-RuNPs) via ROS-dependent apoptosis in SMMC-7721 Cells. ACS Appl Mater Interfaces. 2016;8:15000−15012. doi:10.1021/acsami.5b02261.
  • Ho CM, Liao KJ, Lok CN, Che CM. Nitric oxide-releasing ruthenium nanoparticles. Chem Commun. 2011;47:10776–10778. doi:10.1039/c1cc13830h.
  • He W, Zhou YT, Wamer WG, Boudreau MD, Yin JJ. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials. 2012;33:7547–7555. doi:10.1016/j.biomaterials.2012.06.076.
  • He W, Zhou YT, Wamer WG, Hu X, Wu X, Zheng Z, Boudreau MD, Yin JJ. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials. 2013;34:765–773. doi:10.1016/j.biomaterials.2012.10.010.
  • He W, Liu Y, Wamer WG, Yin JJ. Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. J Food Drug Anal. 2014;22:49–63. doi:10.1016/j.jfda.2014.01.004.
  • Li M, Yin JJ, Wamer WG, Lo YM. Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using electron spin resonance. J Food Drug Anal. 2014;22:76–85. doi:10.1016/j.jfda.2014.01.006.
  • Wen T, He W, Chong Y, Liu Y, Yin JJ, Wu X. Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: implications for biomedical applications. Phys Chem Chem Phys. 2015;17:24937–24943. doi:10.1039/C5CP04046A.
  • Chen C, Fan S, Li C, Chong Y, Tian X, Zheng J, Fu PP, Jiang X, Wamer WG, Yin JJ. Platinum nanoparticles inhibit antioxidant effects of vitamin C via ascorbate oxidase-mimetic activity. J Mater Chem B. 2016;4:7895–7901. doi:10.1039/C6TB02382G.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231–1237. doi:10.1016/S0891-5849(98)00315-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.