3,262
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Pullulan microbeads/Si-HPMC hydrogel injectable system for the sustained delivery of GDF-5 and TGF-β1: new insight into intervertebral disc regenerative medicine

, , , , , , , , & show all
Pages 999-1010 | Received 03 May 2017, Accepted 06 Jun 2017, Published online: 23 Jun 2017

References

  • Autissier A , Le Visage C , Pouzet C et al. (2010). Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomaterialia 6:3640–8.
  • Aydogdu H , Keskin D , Baran ET et al. (2016). Pullulan microcarriers for bone tissue regeneration. Mater Sci Eng C 63:439–49.
  • Balkovec C , Vernengo AJ , McGill SM. (2016). Disc height loss and restoration via injectable hydrogel influences adjacent segment mechanics in-vitro. Clin Biomech 36:1–7.
  • Bertram H , Kroeber M , Wang H et al. (2005). Matrix-assisted cell transfer for intervertebral disc cell therapy. Biochem Biophys Res Commun 331:1185–92.
  • Blanquer SBG , Grijpma DW , Poot A. (2014). Delivery systems for the treatment of degenerated intervertebral discs. Adv Drug Deliv RevRev 84:172–87.
  • Bonnard T , Yang G , Petiet A et al. (2014). Abdominal aortic aneurysms targeted by functionalized polysaccharide microparticles: a new tool for SPECT imaging. Theranostics 4:592–603. Available at: http://doi.org/10.7150/thno.7757
  • Bourges X , Weiss P , Daculsi G et al. (2002). Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use. Adv Colloid Interface Sci 99:215–28.
  • Brandon D , Kaplan WD. (2008). Microstructural characterization of materials. 2nd ed. Chichester, West Sussex, UK: John Wiley & Sons.
  • Buchtova N , Rethore G , Boyer C et al. (2013). Nanocomposite hydrogels for cartilage tissue engineering: mesoporous silica nanofibers interlinked with siloxane derived polysaccharide. J Mater Sci Mater MedMed 24:1875–84.
  • Célia Monteiro de Paula R , Andrade Feitosa J , Beserra Paula H. (2015). Polysaccharide based copolymers as supramolecular systems in biomedical applications. CDTTargets 16:1591–605.
  • Cheng K-C , Demirci A , Catchmark JM. (2011). Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92:29–44.
  • Chujo T , An HS , Akeda K. (2006). Effects of growth differentiation factor-5 on the intervertebral Disc in vitro bovine study and in vivo rabbit disc degeneration model study. Spine (Phila Pa 1976) 31:2909–17.
  • Colombier P , Camus A , Lescaudron L et al. (2014). Intervertebral disc regeneration: a great challenge for tissue engineers. Trends Biotechnol 32:433–5.
  • Colombier P , Clouet J , Boyer C et al. (2016). TGF- b 1 and GDF5 act synergistically to drive the differentiation of human adipose stromal cells toward nucleus pulposus-like cells. Stem Cells 34:653–67.
  • Elliott DM , Yerramalli CS , Beckstein JC et al. (2008). The effect of relative needle diameter in puncture and sham injection animal models of degeneration. Spine 33:588–96.
  • Fatimi A , Tassin JF , Quillard S et al. (2008). The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices. Biomaterials 29:533–43.
  • Flory PJ. (1953). Principles of polymer chemistry. Cornell University Press: Ithaca.
  • Fundueanu G , Constantin M , Ascenzi P. (2008). Preparation and characterization of pH- and temperature-sensitive pullulan microspheres for controlled release of drugs. Biomaterials 29:2767–75.
  • Fusellier M , Colombier P , Lesoeur J et al. (2016). Longitudinal comparison of enzyme- and laser-treated intervertebral disc by MRI, X-ray, and histological analyses reveals discrepancies in the progression of disc degeneration: a rabbit study. BioMed Res Int 2016:5498271.
  • Henry N , Clouet J , Le Visage C et al. (2017). Silica nanofibers as a new drug delivery system: a study of protein-silica interactions. J Mater Chem B 5:2908–20.
  • Heo J , Koh RH , Shim W et al. (2016). Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering. Drug Deliv Transl ResRes 6:148–58.
  • Holland TA , Tabata Y , Mikos AG. (2005). Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101(1–3 SPEC. ISS):111–25.
  • Holland TA , Tessmar JKV , Tabata Y et al. (2004). Transforming growth factor-β1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J Control Release 94:101–14.
  • Illien-Jünger S , Pattappa G , Peroglio M et al. (2012). Homing of mesenchymal stem cells in induced degenerative intervertebral discs in a whole organ culture system. Spine 37:1865–73.
  • Jeong YI , Na HS , Oh JS et al. (2006). Adriamycin release from self-assembling nanospheres of poly(dl-lactide-co-glycolide)-grafted pullulan. Int J Pharm 322:154–60.
  • Kepler CK , Ponnappan RK , Tannoury C et al. (2013). The molecular basis of intervertebral disc degeneration. Spine J 13:318–30.
  • Kim K , Cheng J , Liu Q et al. (2010). Investigation of mechanical properties of soft hydrogel microcapsules in relation to protein delivery using a MEMS force sensor. J Biomed Mater Res A 92:103–13.
  • Koushki N , Tavassoli H , Katbab AA et al. (2015). A new injectable biphasic hydrogel based on partially hydrolyzed polyacrylamide and nano hydroxyapatite, crosslinked with chromium acetate, as scaffold for cartilage regeneration. AIP Confer Proc 1664:9089–96.
  • Lack S , Dulong V , Cerf DL et al. (2004). Hydrogels based on pullulan crosslinked with sodium trimetaphosphate (STMP): rheological study. Polym Bull 436:429–36.
  • Lack S , Dulong V , Picton L et al. (2007). High-resolution nuclear magnetic resonance spectroscopy studies of polysaccharides crosslinked by sodium trimetaphosphate: a proposal for the reaction mechanism. Carbohydrate Res 342:943–53.
  • Leathers TD. (2003). Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62:468–73.
  • Lu K-Y , Li R , Hsu C-H et al. (2017). Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydrate Polymers 165:410–20.
  • Manchikanti L , Singh V , Datta S et al. (2009). Comprehensive review of epidemiology, scope, and impact of spinal pain. Pain Phys 12:E35–70.
  • Martin JT , Gorth DJ , Beattie EE et al. (2013). Needle puncture injury causes acute and long-term mechanical deficiency in a mouse model of intervertebral disc degeneration. J Orthop Res 31:1276–82.
  • Masuda K , Sakagami M , Horie K et al. (2001). Evaluation of carboxymethylpullulan as a novel carrier for targeting immune tissues. Pharm Res 18:217–23.
  • Mathieu E , Lamirault G , Toquet C et al. (2012). Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS One 7:e51991.
  • Merceron C , Portron S , Vignes-Colombeix C et al. (2012). Pharmacological modulation of human mesenchymal stem cell chondrogenesis by a chemically oversulfated polysaccharide of marine origin: potential application to cartilage regenerative medicine. Stem Cells 30:471–80.
  • Michalek AJ , Funabashi KL , Iatridis JC. (2010). Needle puncture injury of the rat intervertebral disc affects torsional and compressive biomechanics differently. Eur Spine J 19:2110–16.
  • Mishra B , Vuppu S , Rath K. (2011). The role of microbial pullulan, a biopolymer in pharmaceutical approaches: a review. J Appl Pharm Sci 1:45–50.
  • Morimoto N , Hirano S , Takahashi H et al. (2013). Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromolecules 14:56–63.
  • Nath SD , Linh NT , Sadiasa A et al. (2013). Encapsulation of simvastatin in PLGA microspheres loaded into hydrogel loaded BCP porous spongy scaffold as a controlled drug delivery system for bonetissue regeneration. J Biomater Appl 28:1151–63.
  • Nishimura T , Takara M , Mukai S et al. (2015). A light sensitive self-assembled nanogel as a tecton for protein patterning materials. Chem Commun (Camb) 52:1222–5.
  • Pattappa G , Peroglio M , Sakai D et al. (2014). Ccl5/Rantes is a key chemoattractant released by degenerative intervertebral discs in organ culture. eCMMater 1:124–136.
  • Peh WCG. (2005). Provocative discography: current status. Biomed Imag Interv J 1:e2–7.
  • Portron S , Merceron C , Gauthier O et al. (2013). Effects of in vitro low oxygen tension preconditioning of adipose stromal cells on their in vivo chondrogenic potential: application in cartilage tissue repair. PLoS One 8:e62368.
  • Prajapati VD , Jani GK , Khanda SM. (2013). Pullulan: an exopolysaccharide and its various applications. Carbohydr Polym 95:540–9.
  • Puppi D , Migone C , Grassi L et al. (2016). Integrated three-dimensional fiber/hydrogel biphasic scaffolds for periodontal bone tissue engineering. Polym Int 65:631–40.
  • Purnama A , Aid-Launais R , Haddad O et al. (2015). Fucoidan in a 3D scaffold interacts with vascular endothelial growth factor and promotes neovascularization in mice. Drug Deliv Transl Res 5:187--97.
  • Qiu Y , Park K. (2012). Environment-sensitive hydrogels for drug delivery. Advanced Drug Deliv Rev 64(SUPPL):49–60.
  • Shimomura K , Moriguchi Y , Murawski CD et al. (2014). Osteochondral tissue engineering with biphasic scaffold: current strategies and techniques. Tissue Eng B Rev 20:468–76.
  • Shingel KI. (2004). Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan. Carbohydrate Res 339:447–60.
  • Suginoshita Y , Tabata Y , Matsumura T , Toda Y. (2002). Liver targeting of human interferon-b with pullulan based on metal coordination. J Control Release 83:75–88.
  • Thébaud N , Pierron D , Bareille R et al. (2007). Human endothelial progenitor cell attachment to polysaccharide-based hydrogels: a pre-requisite. J Mater Sci: Mater Med 18:339–45.
  • Tran CM , Schoepflin ZR , Markova DZ et al. (2014). CCN2 suppresses catabolic effects of interleukin-1β through α5β1 and αVβ3 integrins in nucleus pulposus cells. J Biol Chem 289:7374–87.
  • Vinatier C , Gauthier O , Fatimi A et al. (2009). An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol Bioeng 102:1259–67.
  • Vinatier C , Magne D , Moreau A et al. (2007). Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res A 80:66–74.
  • Wang J , Cui S , Bao Y et al. (2014). Tocopheryl pullulan-based self assembling nanomicelles for anti-cancer drug delivery. Mater Sci Eng C Mater Biol Appl 43:614–21.
  • Wang W-J , Yu X-H , Wang C et al. (2015). MMPs and ADAMTSs in intervertebral disc degeneration. Clin Chim Acta Chem 448:238–46.
  • Wenk E , Meinel AJ , Wildy S et al. (2009). Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering. Biomaterials 30:2571–81.
  • Whatley BR , Wen X. (2012). Intervertebral disc (IVD): structure, degeneration, repair and regeneration. Mater Sci Eng C 32:61–77.
  • Woo K , Seib PA. (1997). Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate. Carbohydr Poly 33:263–71.
  • Yang R , Lao QC , Yu HP et al. (2015). Tween-80 and impurity induce anaphylactoid reaction in zebrafish. J Appl Toxicol 35:295–301.
  • Zeng Y , Chen C , Liu W et al. (2015). Injectable microcryogels reinforced alginate encapsulation of mesenchymal stromal cells for leak-proof delivery and alleviation of canine disc degeneration. Biomaterials 59:53–65.