2,232
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Synergism of cisplatin-oleanolic acid co-loaded hybrid nanoparticles on gastric carcinoma cells for enhanced apoptosis and reversed multidrug resistance

, , &
Pages 191-199 | Received 13 Sep 2019, Accepted 27 Dec 2019, Published online: 10 Jan 2020

Reference

  • Bao X, Gao M, Xu H, et al. (2015). A novel oleanolic acid-loaded PLGA-TPGS nanoparticle for liver cancer treatment. Drug Dev Ind Pharm 41:1193–203.
  • Chai S, Kan S, Sun R, et al. (2018). Fabricating polydopamine-coated MoSe2-wrapped hollow mesoporous silica nanoplatform for controlled drug release and chemo-photothermal therapy. IJN 13:7607–21.
  • Chen Z, Zhao P, Luo Z, et al. (2016). Cancer cell membrane–biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 10:10049–57.
  • Cheng C, Meng YB, Zhang ZH, et al. (2019). pH responsible and fluorescent Cy5.5-PEG-g-A-HA/CDDP complex nanoparticles: synthesis, characterization, and application for targeted drug delivery. J Mater Sci-Mater M 30:58.
  • Davis FM, Azimi I, Faville RA, et al. (2014). Induction of epithelial–mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene 33:2307–16.
  • Dei S, Braconi L, Trezza A, et al. (2019). Modulation of the spacer in N,N-bis(alkanol)amine aryl ester heterodimers led to the discovery of a series of highly potent P-glycoprotein-based multidrug resistance (MDR) modulators. Eur J Med Chem 172:71–94.
  • Gao F, Zhang JM, Fu CM, et al. (2017). iRGD-modified lipid–polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. IJN 12:4147–62.
  • Khan MW, Zhao PX, Khan A, et al. (2019). Synergism of cisplatin-oleanolic acid co-loaded calcium carbonate nanoparticles on hepatocellular carcinoma cells for enhanced apoptosis and reduced hepatotoxicity. IJN 14:3753–71.
  • Li M, Luo Z, Zhao Y. (2018). Self-assembled hybrid nanostructures: versatile multifunctional nanoplatforms for cancer diagnosis and therapy. Chem Mater 30:25–53.
  • Li SZ, Zhao Q, Wang B, et al. (2018). Quercetin reversed MDR in breast cancer cells through down-regulating P-gp expression and eliminating cancer stem cells mediated by YB-1 nuclear translocation. Phytother Res 32:1530–6.
  • Man DKW, Casettari L, Cesp M, et al. (2015). Oleanolic acid loaded PEGylated PLA and PLGA nanoparticles with enhanced cytotoxic activity against cancer cells. Mol Pharmaceutics 12:2112–25.
  • Meng N, Zhou ZW, Chen QY. (2018). c(RGDyK) Peptide-conjugated pluronic micelle for the effective delivery of epirubicin in glioblastoma: combination of radiotherapy and chemotherapy. J Biomater Tissue Eng 8:1551–7.
  • Meng Z, Zhou X, Xu J, et al. (2019). Light-Triggered in Situ Gelation to Enable Robust Photodynamic-Immunotherapy by Repeated Simulations. Adv Mater 31:1900927.
  • Natarajan A, Gruettner C, Ivkov R, et al. (2008). Nanoferrite particle based radioimmunonanoparticles: binding affinity and in vivo pharmacokinetics. Bioconjugate Chem 19:1211–8.
  • Negi LM, Talegaonkar S, Jaggi M, Verma AK. (2019). Hyaluronated imatinib liposomes with hybrid approach to target CD44 and P-gp overexpressing MDR cancer: an in-vitro, in-vivo and mechanistic investigation. J Drug Target 27:183–92.
  • Rao L, Bu LL, Cai B, et al. (2016). Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv Mater 28:3460–6.
  • Semalty A, Semalty M, Rawat BS, et al. (2009). Pharmacosomes: the lipid-based new drug delivery system. Exp Opin Drug Deliv 6:599–612.
  • Shanmugam MK, Dai XY, Kumar AP, et al. (2014). Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: Preclinical and clinical evidence. Cancer Letters 346:206–16.
  • Sun S, Gebauer D, Colfen H. (2016). A solvothermal method for synthesizing monolayer protected amorphous calcium carbonate clusters. Chem Commun 52:7036–8.
  • Tan LW, Ma BY, Zhao Q, et al. (2017). Toxicity evaluation and anti-tumor study of docetaxel loaded mPEG-polyester micelles for breast cancer therapy. J Biomed Nanotechnol 13:393–408.
  • Tang D, Zhao X, Yang T, Wang C. (2018). Paclitaxel prodrug based mixed micelles for tumor-targeted chemotherapy. RSC Adv 8:380–9.
  • Tang QS, Chen DZ, Xue WQ, et al. (2011). Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HSA MNPs) in vivo. Int J Nanomed 6:3077–85.
  • Tu X, Min LF, Chen QO, et al. (2010). Study on using magnetic iron oxide nanoparticles as HIF-1α shRNA gene carrier to reverse cisplatin resistance of A549/CDDP cell lines. Prog Biochem Biophys 37:1090–100.
  • Vilella A, Ruozi B, Belletti D, et al. (2015). Endocytosis of nanomedicines: the case of glycopeptide engineered PLGA nanoparticles. Pharmaceutics 7:74–89.
  • Wang C, Chen S, Yu Q, et al. (2017). Taking advantage of the disadvantage: employing the high aqueous instability of amorphous calcium carbonate to realize burst drug release within cancer cells. J Mater Chem B 5:2068–73.
  • Wang C, Han M, Liu X, et al. (2019). Mitoxantrone-preloaded water-responsive phospholipid-amorphous calcium carbonate hybrid nanoparticles for targeted and effective cancer therapy. IJN 14:1503–17.
  • Wang C, Liu X, Chen S, et al. (2018). Facile preparation of phospholipid–amorphous calcium carbonate hybrid nanoparticles: toward controllable burst drug release and enhanced tumor penetration. Chem Commun 54:13080–3.
  • Wang C, Wang Z, Zhao X, et al. (2019). DOX loaded aggregation-induced emission active polymeric nanoparticles as a fluorescence resonance energy transfer traceable drug delivery system for self-indicating cancer therapy. Acta Biomaterialia 85:218–28.
  • Wang C, Yu F, Liu X, et al. (2019). Cancer-specific therapy by artificial modulation of intracellular calcium concentration. Adv Healthcare Mater 8:1900501.
  • Wen L, Liang C, Chen E, et al. (2016). regulation of multi-drug resistance in hepatocellular carcinoma cells is TRPC6/calcium dependent. Sci Rep 6:23269.
  • Xiong H, Du S, Zhang P, et al. (2018). Primary tumor and pre-metastatic niches co-targeting “peptides-lego” hybrid hydroxyapatite nanoparticles for metastatic breast cancer treatment. Biomater Sci 6:2591–604.
  • Xiong H, Ni J, Jiang Z, et al. (2018). Intracellular self-disassemble polysaccharide nanoassembly for multi-factors tumor drug resistance modulation of doxorubicin. Biomater Sci 6:2527–40.
  • Xiong H, Wu Y, Jiang Z, et al. (2019). pH-activatable polymeric nanodrugs enhanced tumor chemo/antiangiogenic combination therapy through improving targeting drug release. J Colloid Interface Sci 536:135–48.
  • Xue J, Zhao Z, Zhang L, et al. (2017). Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nature Nanotech 12:692–700.
  • Yalcin S, Ozluer O, Gunduz U. (2016). Nanoparticle-based drug delivery in cancer: the role of cellmembrane structures. Ther Deliv 7:773–81.
  • Zhang X, Li Y, Wei M, et al. (2019). Cetuximab-modified silica nanoparticle loaded with ICG for tumor-targeted combinational therapy of breast cancer. Drug Deliv 26:129–36.
  • Zhao X, Tang D, Yang T, Wang C. (2018). Facile preparation of biocompatible nanostructured lipid carrier with ultra-small size as a tumor-penetration delivery system. Coll Surf B: Biointerf 170:355–63.
  • Zou Z, Zou R, Zong D, et al. (2017). miR-495 sensitizes MDR cancer cells to the combination of doxorubicin and taxol by inhibiting MDR1 expression. J Cell Mol Med 21:1929–43.