4,862
Views
35
CrossRef citations to date
0
Altmetric
Research Article

Self-Assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery

, , , , ORCID Icon, , & show all
Pages 200-215 | Received 22 Nov 2019, Accepted 13 Jan 2020, Published online: 27 Jan 2020

Reference

  • Abdel-Mottaleb MM, Neumann D, Lamprecht A. (2011). Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Eur. J. Pharm. Biopharm 79:36–42.
  • Abdolhi N, Soltani A, Fadafan HK, et al. (2017). Preparation, characterization and toxicity evaluation of Co3O4 and NiO-filled multi-walled carbon nanotubes loaded to chitosan. Nano-Structures & Nano-Objects 12:182–7.
  • Alkholief M. (2019). Optimization of Lecithin-Chitosan nanoparticles for simultaneous encapsulation of doxorubicin and piperine. J. Drug Deliv. Sci. Technol 52:204–14.
  • Arias JL, López-Viota M, Delgado ÁV, Ruiz MA. (2010). Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting. Colloids Surf. B. Biointerfaces 77:111–6.
  • Attama A, Schicke B, Paepenmüller T, Müller-Goymann C. (2007). Solid lipid nanodispersions containing mixed lipid core and a polar heterolipid: characterization. Eur. J. Pharm. Biopharm 67:48–57.
  • Augustine R, Dan P, Schlachet I, et al. (2019). Chitosan ascorbate hydrogel improves water uptake capacity and cell adhesion of electrospun poly (epsilon-caprolactone) membranes. Int J Pharma 559:420–6.
  • Bahadori M, Mohammadi F. (2006). Nanomedicine. Iran J Pathol 1:41–8.
  • Bajpai A, Gupta R. (2011). Magnetically mediated release of ciprofloxacin from polyvinyl alcohol based superparamagnetic nanocomposites. J Mater Sci: Mater Med 22:357–69.
  • Baltzley S, Mohammad A, Malkawi AH, Al-Ghananeem AM. (2014). Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles. AAPS PharmSciTech 15:1598–602.
  • Barbieri S, Sonvico F, Como C, et al. (2013). Lecithin/chitosan controlled release nanopreparations of tamoxifen citrate: Loading, enzyme-trigger release and cell uptake. J Con Release 167:276–83.
  • Barratt GM. (2000). Therapeutic applications of colloidal drug carriers. Pharma Sci Technol Today 3:163–71.
  • Battaglia L, Gallarate M. (2012). Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Del 9:497–508.
  • Bhatta RS, Chandasana H, Chhonker YS, et al. (2012). Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies. Int J Pharma 432:105–12.
  • Cao J, Chi J, Xia J, et al. (2019). Iodinated cyanine dyes for fast near-infrared-guided deep tissue synergistic phototherapy. ACS Appl Mater Interfaces 11:25720–9.
  • Cao J, Ge R, Zhang M, et al. (2018). A triple modality BSA-coated dendritic nanoplatform for NIR imaging, enhanced tumor penetration and anticancer therapy. Nanoscale 10:9021–37.
  • Cardoso PB, Machado TO, Feuser PE, et al. (2018). Biocompatible polymeric nanoparticles from castor oil derivatives via thiol‐ene miniemulsion polymerization. Eur J Lipid Sci Technol 120:1700212.
  • Chadha R, Gupta S, Pathak N. (2012). Artesunate-loaded chitosan/lecithin nanoparticles: preparation, characterization, and in vivo studies. Drug Dev Ind Pharm 38:1538–46.
  • Chaouat C, Balayssac S, Malet-Martino M, et al. (2017). Green microparticles based on a chitosan/lactobionic acid/linoleic acid association. Characterisation and evaluation as a new carrier system for cosmetics. J Microencapsul 34:162–70.
  • Chhonker YS, Prasad YD, Chandasana H, et al. (2015). Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int J Bio Macromol 72:1451–8.
  • Cho H-J, Yoon I-S, Yoon HY, et al. (2012). Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials 33:1190–200.
  • Chuah AM, Kuroiwa T, Ichikawa S, et al. (2009). Formation of biocompatible nanoparticles via the self‐assembly of chitosan and modified lecithin. J Food Sci 74:N1–N8.
  • Clementino A, Batger M, Garrastazu G, et al. (2016). The nasal delivery of nanoencapsulated statins–an approach for brain delivery. Indian J. Nephro 11:6575–90.
  • Clementino A, Pozzoli M, Botti E, Sonvico F. (2018). Lecithin/chitosan-based nanoparticles for the nasal delivery of statins: enzyme-trigger controlled release and cellular transport. Respiratory Drug Del 2:589–594.
  • Corbo C, Mahmoudi M, Farokhzad OC. (2018). Personalized cancer-specific protein corona affects the therapeutic impact of nanoparticles. Am Assoc Cancer Res 5:378–387.
  • Corbo C, Molinaro R, Tabatabaei M, et al. (2017). Personalized protein corona on nanoparticles and its clinical implications. Biomater Sci 5:378–87.
  • Deng Y, Ma Q, Yuan H, et al. (2019). Development of dual-component protein microparticles in all-aqueous systems for biomedical applications. J Mater Chem B 7:3059–65.
  • Di Crescenzo A, Velluto D, Hubbell JA, Fontana A. (2011). Biocompatible dispersions of carbon nanotubes: a potential tool for intracellular transport of anticancer drugs. Nanoscale 3:925–8.
  • Di Pasqua AJ, Wallner S, Kerwood DJ, Dabrowiak JC. (2009). Adsorption of the Pt(II) anticancer drug carboplatin by mesoporous silica. Chem Biodivers 6:1343–9.
  • Dutta T, Ghosh NN, Chattopadhyay AP, Das M. (2019). Chitosan encapsulated water-soluble silver bionanocomposite for size-dependent antibacterial activity. Nano-Structures & Nano-Objects 20:100393.
  • Eid M, El-Hallouty S, El-Manawaty M, et al. (2018). Preparation conditions effect on the physico-chemical properties of magnetic–plasmonic core–shell nanoparticles functionalized with chitosan: green route. Nano-Structures & Nano-Objects 16:215–23.
  • Ejeromedoghene O, Adewuyi S, Amolegbe SA, et al. (2018). Electrovalent chitosan functionalized methyl-orange/metal nanocomposites as chemosensors for toxic aqueous anions. Nano-Structures & Nano-Objects 16:174–9.
  • Gerelli Y, Di Bari M, Deriu A, et al. (2008). Structure and organization of phospholipid/polysaccharide nanoparticles. J Phys Condens Mat 20:104211.
  • Ghosal K, Ghosh D, Das SK. (2018). Preparation and evaluation of naringin-loaded polycaprolactone microspheres based oral suspension using Box-Behnken design. J. Mol. Liq 256:49–57.
  • Goldberg M, Langer R, Jia X. (2007). Nanostructured materials for applications in drug delivery and tissue engineering. J Biomat Sci 18:241–68.
  • Grant J, Blicker M, Piquette-Miller M, Allen C. (2005). Hybrid films from blends of chitosan and egg phosphatidylcholine for localized delivery of paclitaxel. J Pharma Sci 94:1512–27.
  • Gupta A, Kagliwal LD, Singhal RS. (2013) Biotransformation of polyphenols for improved bioavailability and processing stability. Adv. Food Nutr. Res 69:183–217.
  • Hafner A, Dürrigl M, Pepić I, Filipović-Grčić J. (2011). Short- and long-term stability of lyophilised melatonin-loaded lecithin/chitosan nanoparticles. Chem Pharm Bull 59:1117–23.
  • He Q, Gao Y, Zhang L, et al. (2011). A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials 32:7711–20.
  • Hua M-Y, Yang H-W, Chuang C-K, et al. (2010). Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer. Biomaterials 31:7355–63.
  • Ichikawa S, Iwamoto S, Watanabe J. (2005). Formation of biocompatible nanoparticles by self-assembly of enzymatic hydrolysates of chitosan and carboxymethyl cellulose. Biosci Biotechnol Biochem 69:1637–42.
  • Ilk S, Saglam N, Özgen M. (2017). Kaempferol loaded lecithin/chitosan nanoparticles: preparation, characterization, and their potential applications as a sustainable antifungal agent. Artif Cells Nanomed Biotechnol 45:907–16.
  • Joshy K, Sharma CP. (2012). Blood Compatible nanostructured lipid carriers for the enhanced delivery of azidothymidine to brain. Adv Sci Lett 6:47–55.
  • Joshy KS, Snigdha S, Anne G, et al. (2018). Poly (vinyl pyrrolidone)-lipid based hybrid nanoparticles for anti viral drug delivery. Chem. Phys. Lipids 210:82–9.
  • Joshy K, Snigdha S, Kalarikkal N, et al. (2017). Gelatin modified lipid nanoparticles for anti-viral drug delivery. Chem. Phys. Lipids 207:24–37.
  • Joshy K, Susan MA, Snigdha S, et al. (2018). Encapsulation of zidovudine in PF-68 coated alginate conjugate nanoparticles for anti-HIV drug delivery. Int J Biolog Macromol 107:929–37.
  • Jourghanian P, Ghaffari S, Ardjmand M, et al. (2016). Sustained release curcumin loaded solid lipid nanoparticles. Adv Pharm Bull 6:17–21.
  • Kapanigowda UG, Nagaraja SH, Ramaiah B, Boggarapu PR. (2015). Improved intraocular bioavailability of ganciclovir by mucoadhesive polymer based ocular microspheres: development and simulation process in Wistar rats. Daru J Pharm Sci 23:49.
  • Kaur IP, Bhandari R, Bhandari S, Kakkar V. (2008). Potential of solid lipid nanoparticles in brain targeting. J Con Rel 127:97–109.
  • Khan MM, Madni A, Torchilin V, et al. (2019). Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug Delivery 26:765–72.
  • Lawrie G, Keen I, Drew B, et al. (2007). Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolec 8:2533–41.
  • Li L, Raghupathi K, Song C, et al. (2014). Self-assembly of random copolymers. Chemical Communications 50:13417–32.
  • Li Z, Su K, Cheng B, et al. (2010). Organically modified MCM-type material preparation and its usage in controlled amoxicillin delivery. J. Colloid Interface Sci 342:607–13.
  • Liu J, Gong T, Fu H, et al. (2008). Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharma 356:333–44.
  • Liu M, Zhang J, Shan W, Huang Y. (2015). Developments of mucus penetrating nanoparticles. Asian J Pharma Sci 10:275–82.
  • Liu M, Zhang J, Zhu X, et al. (2016). Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Con Release 222:67–77.
  • Liu L, Zhou C, Xia X, Liu Y. (2016). Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation. Int J Nanomedicine 11:761–9.
  • Luo X, Matranga C, Tan S, et al. (2011). Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials 32:6316–23.
  • Manuja A, Dilbaghi N, Kaur H, et al. (2018). Chitosan quinapyramine sulfate nanoparticles exhibit increased trypanocidal activity in mice. Nano-Structures & Nano-Objects 16:193–9.
  • Ma Q, Song Y, Baier G, et al. (2016). Osmo-solidification of all-aqueous emulsion with enhanced preservation of protein activity. J Mater Chem B 4:1213–8.
  • Ma Q, Song Y, Kim JW, et al. (2016). Affinity partitioning-induced self-assembly in aqueous two-phase systems: templating for polyelectrolyte microcapsules. ACS Macro Lett 5:666–70.
  • Mathew S, Snigdha S, Mathew J, Radhakrishnan E. (2018). Poly (vinyl alcohol): montmorillonite: boiled rice water (starch) blend film reinforced with silver nanoparticles; characterization and antibacterial properties. Applied Clay Science 161:464–73.
  • Ma Q, Yuan H, Song Y, et al. (2018). Partitioning-dependent conversion of polyelectrolyte assemblies in an aqueous two-phase system. Soft Matter 14:1552–8.
  • Moraru CI, Panchapakesan CP, Huang Q, et al. (2003). Facets of Nanotechnology as Seen in Food Processing, Packaging, and Preservation Industry. Nanotechnol 57:24–29.
  • Moreno E, Schwartz J, Larrea E, et al. (2015). Assessment of β-lapachone loaded in lecithin-chitosan nanoparticles for the topical treatment of cutaneous leishmaniasis in L. major infected BALB/c mice. Nanomed Nanotechnol Biol Med 11:2003–12.
  • Muchow M, Maincent P, Müller RH. (2008). Lipid nanoparticles with a solid matrix (SLN®, NLC®, LDC®) for oral drug delivery. Drug Dev Ind Pharm 34:1394–405.
  • Narayanan D, Ninan N, Jayakumar R, et al. (2014). O-carboxymethyl chitosan nanoparticles for controlled release of non-steroidal anti-inflammatory drugs. Adv Sci Engng Med 6:522–30.
  • Naskar S, Kuotsu K, Sharma S. (2019). Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. J. Drug Targeting 27:379–93.
  • Nathanson M, Kanhaiya K, Pryor A, Jr, et al. (2018). Atomic-Scale structure and stress release mechanism in core–shell nanoparticles. ACS Nano 12:12296–304.
  • Nayak AP, Tiyaboonchai W, Patankar S, et al. (2010). Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. Colloids Surf. B. Biointerfaces 81:263–73.
  • Nosrati H, Sefidi N, Sharafi A, et al. (2018). Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem 76:501–9.
  • Ochekpe NA, Olorunfemi PO, Ngwuluka NC. (2009). Nanotechnology and drug delivery part 2: nanostructures for drug delivery. Trop J Pharm Res 8:276.
  • Özcan I, Azizoğlu E, Senyiğit T, et al. (2013). Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles: in-vitro and in-vivo evaluations. Int J Nanomedicine 8:461–75,
  • Pandey R, Ahmad Z, Sharma S, Khuller G. (2005). Nano-encapsulation of azole antifungals: potential applications to improve oral drug delivery. Int J Pharma 301:268–76.
  • Panos I, Acosta N, Heras A. (2008). New drug delivery systems based on chitosan. Curr Drug Discov Technol 5:333–41.
  • Park K, Kim K, Kwon IC, et al. (2004). Preparation and characterization of self-assembled nanoparticles of heparin-deoxycholic acid conjugates. Langmuir 20:11726–31.
  • Partenhauser A, Bernkop-Schnürch A. (2016). Bernkop-Schnuerch, A. Mucoadhesive polymers in the treatment of dry X syndrome. Drug Discovery Today 21:1051–62.
  • Pathak L, Kanwal A, Agrawal Y. (2015). Curcumin loaded self assembled lipid-biopolymer nanoparticles for functional food applications. J Food Sci Technol 52:6143–56.
  • Popovici R, Seftel E, Mihai G, et al. (2011). Controlled drug delivery system based on ordered mesoporous silica matrices of captopril as angiotensin-converting enzyme inhibitor drug. J Pharma Sci 100:704–14.
  • Quiñones JP, Peniche H, Peniche C. (2018). Chitosan based self-assembled nanoparticles in drug delivery. Polymers 10:235.
  • Raza ZA, Anwar F. (2017). Fabrication of chitosan nanoparticles and multi-response optimization in their application on cotton fabric by using a Taguchi approach. Nano-Structures & Nano-Objects 10:80–90.
  • Rejinold NS, Chennazhi K, Nair S, et al. (2011). Biodegradable and thermo-sensitive chitosan-g-poly (N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier. Carbohydr. Polym 83:776–86.
  • Rodriguez-Hernandez J, Chécot F, Gnanou Y, Lecommandoux S. (2005). Toward ‘smart’nano-objects by self-assembly of block copolymers in solution. Prog Polym Sci 30:691–724.
  • Ruesgas-Ramón M, Figueroa-Espinoza MC, Durand E. (2017). Application of deep eutectic solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities. J Agric Food Chem 65:3591–601.
  • Duttagupta DS, Jadhav VM, Kadam VJ. (2015). Chitosan: a propitious biopolymer for drug delivery. Curr Drug Deliv 12:369–81.
  • Sahoo SK, Dilnawaz F, Krishnakumar S. (2008). Nanotechnology in ocular drug delivery. Drug Discovery Today 13:144–51.
  • Sanguansri P, Augustin MA. (2006). Nanoscale materials development–a food industry perspective. Trends Food Sci Tech 17:547–56.
  • Saraogi GK, Gupta P, Gupta U, et al. (2010). Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int J Pharma 385:143–9.
  • Sato AK, Viswanathan M, Kent RB, Wood CR. (2006). Therapeutic peptides: technological advances driving peptides into development. Cur Opin Biotech 17:638–42.
  • Schatz C, Lucas J-M, Viton C, et al. (2004). Formation and properties of positively charged colloids based on polyelectrolyte complexes of biopolymers. Langmuir 20:7766–78.
  • Schug KA, Lindner W. (2005). Noncovalent binding between guanidinium and anionic groups: focus on biological-and synthetic-based arginine/guanidinium interactions with phosph [on] ate and sulf [on] ate residues. Chem Rev 105:67–114.
  • Şenyiğit T, Sonvico F, Barbieri S, et al. (2010). Lecithin/chitosan nanoparticles of clobetasol-17-propionate capable of accumulation in pig skin. J Con Release 142:368–73.
  • Şenyiğit T, Sonvico F, Rossi A, et al. (2016). In vivo assessment of clobetasol propionate-loaded lecithin-chitosan nanoparticles for skin delivery. Int J Mol Sci 18:32.
  • Shanmugam T, Banerjee R. (2011). Nanostructured self assembled lipid materials for drug delivery and tissue engineering. Ther Deliv 2:1485–516.
  • Sharma K, Somavarapu S, Colombani A, et al. (2013). Nebulised siRNA encapsulated crosslinked chitosan nanoparticles for pulmonary delivery. Int J Pharmaceutics 455:241–7.
  • Son G-H, Lee B-J, Cho C-W. (2017). Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J Pharma Investigation 47:287–96.
  • Sonvico F, Cagnani A, Rossi A, et al. (2006). Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction. Int J Pharma 324:67–73.
  • Sonvico F, Di Bari MT, Bove L, et al. (2006). Mean square hydrogen fluctuations in chitosan/lecithin nanoparticles from elastic neutron scattering experiments. Physica B 385:725–7.
  • Sonvico F, Dubernet C, Colombo P, Couvreur P. (2005). Metallic colloid nanotechnology, applications in diagnosis and therapeutics. Curr Pharm Des 11:2091–105.
  • Sznitowska M, Gajewska M, Janicki S, et al. (2001). Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. Eur. J. Pharm. Biopharm 52:159–63.
  • Tan Q, Liu W, Guo C, Zhai G. (2011). Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int J Nanomed 6:1621–30.
  • Terrón-Mejía K, Martínez-Benavidez E, Higuera-Ciapara I, et al. (2018). Mesoscopic modeling of the encapsulation of capsaicin by lecithin/chitosan liposomal nanoparticles. Nanomaterials 8:425.
  • Tong Q, Li H, Li W, et al. (2011). In vitro and in vivo anti-tumor effects of gemcitabine loaded with a new drug delivery system. J Nanosci Nanotech 11:3651–8.
  • Torchilin VP. (2005). Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–60.
  • Tripisciano C, Costa S, Kalenczuk R, Borowiak-Palen E. (2010). Cisplatin filled multiwalled carbon nanotubes–a novel molecular hybrid of anticancer drug container. Eur Phys J B 75:141–6.
  • Van der Lubben I, Verhoef J, Borchard G, Junginger H. (2001). Chitosan for mucosal vaccination. Adv Drug Deliv Rev 52:139–44.
  • Vauthier C, Bouchemal K. (2009). Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–58.
  • Werle M, Bernkop-Schnürch A. (2008). Thiolated chitosans: useful excipients for oral drug delivery. J Pharma Pharmacol 60:273–81.
  • Wydro P, Krajewska B, Ha̧c-Wydro K. (2007). Chitosan as a lipid binder: a Langmuir monolayer study of chitosan − lipid interactions. Biomacromolecules 8:2611–7.
  • Yang J, Park S-B, Yoon H-G, et al. (2006). Preparation of poly ɛ-caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int J Pharma 324:185–90.
  • Yoo J-W, Irvine DJ, Discher DE, Mitragotri S. (2011). Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10:521–35.
  • Yoo HS, Lee JE, Chung H, et al. (2005). Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J Con Release 103:235–43.
  • Yuan W, He X, Zhou X, Zhu Y. (2018). Hydroxyapatite nanoparticle-coated 3D-printed porous Ti6Al4V and CoCrMo alloy scaffolds and their biocompatibility to human osteoblasts. J Nanosci Nanotechnol 18:4360–5.
  • Zhang L, Chan JM, Gu FX, et al. (2008). Self-assembled lipid − polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2:1696–702.
  • Zhang J, Coulston RJ, Jones ST, et al. (2012). One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science 335:690–4.
  • Zhang D, Pan B, Wu M, et al. (2011). Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions. Environ. Pollut 159:2616–21.
  • Zhou Y, Dong W, Ye J, et al. (2017). A novel matrix dispersion based on phospholipid complex for improving oral bioavailability of baicalein: preparation, in vitro and in vivo evaluations. Drug Delivery 24:720–8.