2,193
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Smart phase transformation system based on lyotropic liquid crystalline@hard capsules for sustained release of hydrophilic and hydrophobic drugs

, , , , , , , & ORCID Icon show all
Pages 449-459 | Received 21 Jan 2020, Accepted 25 Feb 2020, Published online: 11 Mar 2020

References

  • Abd-Allah H, Kamel AO, Sammour OA. (2016). Injectable long acting chitosan/tripolyphosphate microspheres for the intra-articular delivery of lornoxicam: optimization and in vivo evaluation. Carbohydr Polym 149:263–73.
  • Bashiri-Shahroodi A, Nassab PR, Szabó-Révész P, Rajkó R. (2008). Preparation of a solid dispersion by a dropping method to improve the rate of dissolution of meloxicam. Drug Dev Ind Pharm 34:781–8.
  • Chaturvedi M, Kumar M, Pathak K, et al. (2017). Surface solid dispersion and solid dispersion of meloxicam: comparison and product development. Adv Pharm Bull 7:569–77.
  • Conn CE, Drummond CJ. (2013). Nanostructured bicontinuous cubic lipid self-assembly materials as matrices for protein encapsulation. Soft Matter 9:3449–64.
  • Hua T, Zhang X, Tang B, et al. (2018). Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection. BMC Vet Res 14:138.
  • Huang J, Peng T, Li Y, et al. (2017). Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech 18:2919–26.
  • Huang Y, Gui S. (2018). Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. Rsc Adv 8:6978–87.
  • Iqbal H, Ali M, Zeeshan R, et al. (2017). Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Colloid Surfaces B 160:553–63.
  • Jie H, Liu L, Shuangying G, et al. (2019). A novel phytantriol-based in situ liquid crystal gel for vaginal delivery. AAPS PharmSciTech 20:185.
  • Khampieng T, Wnek GE, Supaphol P. (2014). Electrospun DOXY-h loaded-poly(acrylic acid) nanofiber mats: in vitro drug release and antibacterial properties investigation. J Biomater Sci-Polym Ed 25:1292–305.
  • Kulkarni S, Thareja P. (2016). Rheology of colloidal particles in lyotropic hexagonal liquid crystals: the role of particle loading, shape, and phase transition kinetics. Rheol Acta 55:23–36.
  • Kumar MK, Shah MH, Ketkar A, et al. (2004). Effect of drug solubility and different excipients on floating behaviour and release from glyceryl monooleate matrices. Int J Pharm 272:151–60.
  • Kumar SGV, Mishra DN. (2006). Preparation, characterization and in vitro dissolution studies of solid dispersion of meloxicam with PEG 6000. Yakugaku Zasshi - J Pharm Soc Japan 126:657–64.
  • Kumari S, Bargel H, Anby MU, et al. (2018). Recombinant spider silk hydrogels for sustained release of biologicals. ACS Biomate Sci Eng 4:1750–9.
  • Lampis S, Carboni M, Steri D, et al. (2018). Lipid based liquid-crystalline stabilized formulations for the sustained release of bioactive hydrophilic molecules. Colloid Surfaces B 168:35–42.
  • Landh T. (1994). Phase behavior in the system pine needle oil monoglycerides-poloxamer 407-water at 20. degree. J Phys Chem 98:8453–67.
  • Legendre AO, Silva LRR, Silva DM, et al. (2012). Solid state chemistry of the antibiotic doxycycline: structure of the neutral monohydrate and insights into its poor water solubility. Crystengcomm 14:2532–40.
  • Leung SSW, Leal C. (2019). The stabilization of primitive bicontinuous cubic phases with tunable swelling over a wide composition range. Soft Matter 15:1269–77.
  • Li L, Shao C, Lin TF, et al. (2014). Kinetics of cell inactivation, toxin release, and degradation during permanganation of Microcystis aeruginosa. Environ Sci Technol 48:2885–92.
  • Mei L, Xie Y, Huang X, et al. (2017a). An injectable in situ gel with cubic and hexagonal nanostructures for local treatment of chronic periodontitis. Drug Deliv 24:1148–58.
  • Mei L, Xie Y, Huang Y, et al. (2017b). Injectable in situ forming gel based on lyotropic liquid crystal for persistent postoperative analgesia. Acta Biomater. 67:99–110.
  • Mei L, Xie Y, Jing H, et al. (2017c). A novel design for stable self-assembly cubosome precursor-microparticles enhancing dissolution of insoluble drugs. Drug Dev Ind Pharm 43:1239–43.
  • Mulet X, Boyd BJ, Drummond CJ. (2013). Advances in drug delivery and medical imaging using colloidal lyotropic liquid crystalline dispersions. J Colloid Interf Sci 393:1–20.
  • Musa MN, David SR, Zulkipli IN, et al. (2017). Development and evaluation of exemestane-loaded lyotropic liquid crystalline gel formulations. Bioimpacts 7:227–39.
  • Nardin I, Köllner S. (2019). Successful development of oral SEDDS: Screening of excipients from the industrial point of view. Adv Drug Delivery Rev 142:128–40.
  • Nazaruk E, Majkowska-Pilip A, Godlewska M, et al. (2018). Electrochemical and biological characterization of lyotropic liquid crystalline phases – retardation of drug release from hexagonal mesophases. J Electroanal Chem 813:208–15.
  • Owens GJ, Singh RK, Foroutan F, et al. (2016). Sol–gel based materials for biomedical applications. Prog Mater Sci 77:1–79.
  • Pan X, Han K, Peng X, et al. (2013). Nanostructured cubosomes as advanced drug delivery system. Curr Pharm Design 19:6290–97.
  • Peng X, Zhou Y, Han K, et al. (2015). Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin. Drug Des Devel Ther 9:4209–18.
  • Pokharkar V, Patil V, Mandpe L. (2015). Engineering of polymer-surfactant nanoparticles of doxycycline hydrochloride for ocular drug delivery. Drug Deliv 22:955–68.
  • Qian Z, Yue X, Yi S, et al. (2015). Unique lamellar lyotropic liquid crystal phases of nonionic phytosterol ethoxylates in glycerol. Rsc Adv 5:101393–400.
  • Qin L, Mei L, Shan Z, et al. (2016). Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent. Drug Dev Ind Pharm 42:307–16.
  • Rajabalaya R, Musa MN, Kifli N, David SR. (2017). Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals. Dddt 11:393–406.
  • Rizwan S, Boyd B. (2015). Cubosomes: structure, preparation and use as an antigen delivery system. In: Foged C, Rades T, Perrie Y, Hook S, eds. Subunit vaccine delivery. Advances in delivery science and technology. New York: Springer, 125–40.
  • Shah MH, Paradkar A. (2005). Cubic liquid crystalline glyceryl monooleate matrices for oral delivery of enzyme. Int J Pharm 294:161–71.
  • Souza C, Watanabe E, Borgheti‐Cardoso LN, et al. (2014). Mucoadhesive system formed by liquid crystals for buccal administration of poly (hexamethylene biguanide) hydrochloride. J Pharm Sci 103:3914–23.
  • Thakur RR, McMillan HL, Jones DS. (2014). Solvent induced phase inversion-based in situ forming controlled release drug delivery implants. J Control Release 176:8–23.
  • Venkatesh B, Indira S, Size PSF, et al. (2014). Formulation and evaluation of glimepiride oral capsules. Int J Pharm Sci Inv 3:1–13.
  • Wan T, Xu T, Pan J, et al. (2015). Microemulsion based gel for topical dermal delivery of pseudolaric acid B: in vitro and in vivo evaluation. Int J Pharm 493:111–20.
  • Wang D, Feng L, Song B, et al. (2019). Viscoelastic lyotropic liquid crystals formed in a bio-based trimeric surfactant system. Soft Matter 15:4208–14.
  • Yamada S. (2015). Surfactant assemblies (micelles, vesicles, emulsions, films, etc.), an overview. In: Kobayashi S, Müllen K, eds. Encyclopedia of Polymeric Nanomaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2431–6.
  • Zheng T, Huang X, Chen J, et al. (2018). A liquid crystalline precursor incorporating chlorhexidine acetate and sliver nanoparticles for root canal disinfection. Biomater Sci. 6:596–603.
  • Zhou Y, Wang Q, Wang Y, et al. (2014). Biological artificial fluid-induced non-lamellar phases in glyceryl monooleate: the kinetics pathway and its digestive process by bile salts. Drug Dev Ind Pharm. 40:178–85.