3,249
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Drug discovery and formulation development for acute pancreatitis

, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 1562-1580 | Received 30 Jul 2020, Accepted 19 Oct 2020, Published online: 29 Oct 2020

References

  • Ahmed Ali U, Issa Y, Hagenaars JC, et al. (2016). Risk of recurrent pancreatitis and progression to chronic pancreatitis after a first episode of acute pancreatitis. Clin Gastroenterol Hepatol 14:738–46.
  • Amiti R, Tamizhselvi V. Manickam V. (2019). Menadione (vitamin K3) inhibits hydrogen sulfide and substance P via NF-small ka, CyrillicB pathway in caerulein-induced acute pancreatitis and associated lung injury in mice. Pancreatology 19:266–273.
  • Andersen A, Borowitz D, Glesby MJ, et al. (2018). Accelerating the drug delivery pipeline for acute and chronic pancreatitis-knowledge gaps and research opportunities: overview summary of a national institute of diabetes and digestive and kidney diseases workshop. Pancreas 47:1180–4.
  • Arriaga-Pizano L, Boscó-Gárate I, Martínez-Ordaz JL, et al. (2018). High Serum Levels of High-Mobility Group Box 1 (HMGB1) and low levels of heat shock protein 70 (Hsp70) are associated with poor prognosis in patients with acute pancreatitis. Arch Med Res 49:504–11.
  • Atayoglu K. (2016). Effect of N-acetylcysteine on neutrophil functions during experimental acute pancreatitis. Ulus Travma Acil Cerrahi Derg 23:100–106.
  • Bae G-S, Kim D-G, Jo I-J, et al. (2019). Heme oxygenase-1 induced by desoxo-narchinol-A attenuated the severity of acute pancreatitis via blockade of neutrophil infiltration. Int Immunopharmacol 69:225–34.
  • Bae SC, Lee YH. (2018). Comparison of the efficacy and tolerability of tocilizumab, sarilumab, and sirukumab in patients with active rheumatoid arthritis: a Bayesian network meta-analysis of randomized controlled trials. Clinical Rheumatol 37:1471–9.
  • Biczo G, Vegh ET, Shalbueva N, et al. (2018). Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology 154:689–703.
  • Bopanna S, Nayak B, Prakash S, et al. (2017). Increased oxidative stress and deficient antioxidant levels may be involved in the pathogenesis of idiopathic recurrent acute pancreatitis. Pancreatology 17:529–33.
  • Brookes PS, Yoon Y, Robotham JL, et al. (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–33.
  • Bruce JI, Elliott AC. (2007). Oxidant-impaired intracellular Ca2+ signaling in pancreatic acinar cells: role of the plasma membrane Ca2+-ATPase. Am J Physiol Cell Physiol 293:C938–50.
  • Buyukberber M, Savaş MC, Bagci C, et al. (2009). Therapeutic effect of caffeic acid phenethyl ester on cerulein-induced acute pancreatitis. World J Gastroenterol 15:5181–5.
  • Cai J, Duan Y, Yu J, et al. (2012). Bone-targeting glycol and NSAIDS ester prodrugs of rhein: synthesis, hydroxyapatite affinity, stability, anti-inflammatory, ulcerogenicity index and pharmacokinetics studies. Eur J Med Chem 55:409–19.
  • Cen Y, Liu C, Li X, et al. (2016). Artesunate ameliorates severe acute pancreatitis (SAP) in rats by inhibiting expression of pro-inflammatory cytokines and Toll-like receptor 4. Int Immunopharmacol 38:252–60.
  • Cervin C, Vandoolaeghe P, Nistor C, et al. (2009). A combined in vitro and in vivo study on the interactions between somatostatin and lipid-based liquid crystalline drug carriers and bilayers. Eur J Pharm Sci 36:377–85.
  • Chanson P, Timsit J, Harris AG. (1993). Clinical pharmacokinetics of octreotide. Therapeutic applications in patients with pituitary tumours. Clin Pharmacokinet 25:375–91.
  • Chen C, Xia S-H, Chen H, Li X-H. (2008). Therapy for acute pancreatitis with platelet-activating factor receptor antagonists. World J Gastroenterol 14:4735–8.
  • Chen J, Chen J, Wang X, et al. (2016). Ligustrazine alleviates acute pancreatitis by accelerating acinar cell apoptosis at early phase via the suppression of p38 and Erk MAPK pathways. Biomed Pharmacother 82:1–7.
  • Chen KL, Lv ZY, Yang HW, et al. (2016). Effects of tocilizumab on experimental severe acute pancreatitis and associated acute lung injury. Crit Care Med 44:e664-77.
  • Chen X, Zhao H-X, Bai C, et al. (2017). Blockade of high-mobility group box 1 attenuates intestinal mucosal barrier dysfunction in experimental acute pancreatitis. Sci Rep 7:6799,
  • Chen Y, Zhao Q, Chen Q, et al. (2018). Melatonin attenuated inflammatory reaction by inhibiting the activation of p38 and NF-κB in taurocholate‐induced acute pancreatitis. Mol Med Rep 17:5934–5939.
  • Choi J, Wang J, Ren G, Thakor AS. (2018). A novel approach for therapeutic delivery to the rodent pancreas via its arterial blood supply. Pancreas 47:910–915.
  • Chu P-Y, Srinivasan P, Deng J-F, Liu M-Y. (2012). Sesamol attenuates oxidative stress-mediated experimental acute pancreatitis in rats. Hum Exp Toxicol 31:397–404.
  • Dang S-C, Zeng Y-H, Wang P-J, et al. (2014). Clodronate-superparamagnetic iron oxide-containing liposomes attenuate renal injury in rats with severe acute pancreatitis. J Zhejiang Univ Sci B 15:556–65.
  • Dong J, Chen X, Song Y, Fei X. (2019). Chaiqin Chengqi decoction inhibits inflammatory mediators and attenuates acute pancreatitis through deactivation of janus kinase/signal transducer and activator of transcription signaling pathway. J Tradit Chin Med 39:166–73.
  • Du D, Yao L, Zhang R, et al. (2018). Protective effects of flavonoids from Coreopsis tinctoria Nutt. on experimental acute pancreatitis via Nrf-2/ARE-mediated antioxidant pathways. J Ethnopharmacol 224:261–272.
  • Duan L-F, Xu X-F, Zhu L-J, et al. (2017). Dachaihu decoction ameliorates pancreatic fibrosis by inhibiting macrophage infiltration in chronic pancreatitis. World J Gastroenterol 23:7242–52.
  • Duan P-Y, Ma Y, Li X-N, et al. (2019). Inhibition of RIPK1-dependent regulated acinar cell necrosis provides protection against acute pancreatitis via the RIPK1/NF-κB/AQP8 pathway. Exp Mol Med 51:1–17.
  • Forsmark CE, Andersen DK, Farrar JT, et al. (2018). Accelerating the drug delivery pipeline for acute and chronic pancreatitis: summary of the working group on drug development and trials in acute pancreatitis at the national institute of diabetes and digestive and kidney diseases workshop. Pancreas 47:1200–07.
  • Fritz H, Wunderer G. (1983). Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs. Arzneimittelforschung 33:479–94.
  • Gao H-j, Song Q, Lv F-q, et al. (2015). A novel thermosensitive in-situ gel of gabexate mesilate for treatment of traumatic pancreatitis: an experimental study. J Huazhong Univ Sci Technol 35:707–711.
  • García-Rayado G, Cárdenas-Jaén K, de-Madaria E. (2020). Towards evidence-based and personalised care of acute pancreatitis. United European Gastroenterol J 8:403–409.
  • Gong T, Zhang P, Deng C, et al. (2019). An effective and safe treatment strategy for rheumatoid arthritis based on human serum albumin and Kolliphor HS 15. Nanomedicine 14:2169–2187.
  • Gukovskaya AS, Pandol SJ, Gukovsky I. (2016). New insights into the pathways initiating and driving pancreatitis. Curr Opin Gastroenterol 32:429–35.
  • Guo J, Xue P, Yang X-N, et al. (2013). The effect of Chaiqin Chengqi Decoction (柴芩承气汤) on modulating serum matrix metalloproteinase 9 in patients with severe acute pancreatitis. Chin J Integr Med 19:913–7.
  • Hai W, Ping X, Zhi-wen Y, et al. (2018). Therapeutic effect and potential mechanism of pioglitazone in rats with severe acute pancreatitis. Braz J Med Biol Res 51:e6812.
  • Halangk W, Lerch MM, Brandt-Nedelev B, et al. (2000). Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 106:773–81.
  • Han X, Li Q, Lan X, et al. (2019). Microglial depletion with clodronate liposomes increases proinflammatory cytokine levels, induces astrocyte activation, and damages blood vessel integrity. Mol Neurobiol 56:6184–6196.
  • He S, Huang S, Shen Z. (2016). Biomarkers for the detection of necroptosis. Cell Mol Life Sci 73:2177–81.
  • Huang L, Zhang D, Han W, et al. (2019). High-mobility group box-1 inhibition stabilizes intestinal permeability through tight junctions in experimental acute necrotizing pancreatitis. Inflamm Res 68:677–89.
  • HW Z, et al. (2014). Specific lipase-responsive polymer-coated gadolinium nanoparticles for MR imaging of early acute pancreatitis. Biomaterials 35:356–67.
  • Ilem-Ozdemir D, Üstündağ-Oku N, Şenyiğit Z-Y, et al. (2016). Effect of microemulsion formulation on biodistribution of (99m)Tc-Aprotinin in acute pancreatitis models induced rats. Drug Deliv 23:3055–3062.
  • Jakkampudi A, Jangala R, Reddy BR, et al. (2016). NF-κB in acute pancreatitis: mechanisms and therapeutic potential. Pancreatology 16:477–88.
  • Jakkampudi A, Jangala R, Reddy R, et al. (2017). Acinar injury and early cytokine response in human acute biliary pancreatitis. Sci Rep 7:15276.
  • Javed MA, Wen L, Awais S, et al. (2018). TRO40303 ameliorates alcohol-induced pancreatitis through reduction of fatty acid ethyl ester-induced mitochondrial injury and necrotic cell death. Pancreas 47:18–24.
  • Jaworek J, Szklarczyk J, Kot M, et al. (2019). Chemerin alleviates acute pancreatitis in the rat thorough modulation of NF-κB signal. Pancreatology 19:401–408.
  • Jeong Y, Lee S, Lim J, et al. (2017). Docosahexaenoic acid inhibits cerulein-induced acute pancreatitis in rats. Nutrients 9:744.
  • Joubert C, Tiengou L-E, Hourmand-Ollivier I, et al. (2008). Feasibility of self-propelling nasojejunal feeding tube in patients with acute pancreatitis. JPEN J Parenter Enteral Nutr 32:622–4.
  • Kannaiyan R, Shanmugam MK, Sethi G. (2011). Molecular targets of celastrol derived from Thunder of God Vine: potential role in the treatment of inflammatory disorders and cancer. Cancer Lett 303:9–20.
  • Karasulu HY, Oruç N, Üstündağ-Okur N, et al. (2015). Aprotinin revisited: formulation, characterization, biodistribution and therapeutic potential of new aprotinin microemulsion in acute pancreatitis. J Drug Target 23:525–37.
  • Khaksar MR, Rahimifard M, Baeeri M, et al. (2017). Protective effects of cerium oxide and yttrium oxide nanoparticles on reduction of oxidative stress induced by sub-acute exposure to diazinon in the rat pancreas. J Trace Elem Med Biol 41:79–90.
  • Khurana A, Anchi P, Allawadhi P, et al. (2019). Superoxide dismutase mimetic nanoceria restrains cerulein induced acute pancreatitis. Nanomedicine 14:1805–1825.
  • Khurana A, Anchi P, Allawadhi P, et al. (2019). Yttrium oxide nanoparticles reduce the severity of acute pancreatitis caused by cerulein hyperstimulation. Nanomedicine 18:54–65.
  • Kiselyov K, Muallem S. (2016). ROS and intracellular ion channels. Cell Calcium 60:108–14.
  • Kou L, Bhutia YD, Yao Q, et al. (2018a). Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front Pharmacol 9:27,
  • Kou L, Hou Y, Yao Q, et al. (2018b). L-Carnitine-conjugated nanoparticles to promote permeation across blood-brain barrier and to target glioma cells for drug delivery via the novel organic cation/carnitine transporter OCTN2. Artif Cells Nanomed Biotechnol 46:1605–1616.
  • Kou L, Sun R, Bhutia YD, et al. (2018c). Emerging advances in P-glycoprotein inhibitory nanomaterials for drug delivery. Expert Opin Drug Deliv 15:869–879.
  • Kou L, Sun J, Zhai Y, et al. (2013). The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci 8:1–10.
  • Kou L, Sun R, Jiang X, et al. (2020). Tumor microenvironment-responsive, multistaged liposome induces apoptosis and ferroptosis by amplifying oxidative stress for enhanced cancer therapy. ACS Appl Mater Interfaces 12:30031–30043.
  • Kou L, Sun R, Xiao S, et al. (2019). Ambidextrous approach to disrupt redox balance in tumor cells with increased ros production and decreased GSH synthesis for cancer therapy. ACS Appl Mater Interfaces 11:26722–26730.
  • Kou L, Yao Q, Sivaprakasam S, et al. (2017a). Dual targeting of l-carnitine-conjugated nanoparticles to OCTN2 and ATB0,+ to deliver chemotherapeutic agents for colon cancer therapy. Drug Deliv 24:1338–1349.
  • Kou L, Yao Q, Sun M, et al. (2017b). Cotransporting ion is a trigger for cellular endocytosis of transporter-targeting nanoparticles: a case study of high-efficiency SLC22A5 (OCTN2)-mediated carnitine-conjugated nanoparticles for oral delivery of therapeutic drugs. Adv Healthcare Mater 6:1700165.
  • Lai S, Wei Y, Wu Q, et al. (2019). Liposomes for effective drug delivery to the ocular posterior chamber. J Nanobiotechnology 17:64.
  • Lamberti M, Porto S, Zappavigna S, et al. (2015). Levofolene modulates apoptosis induced by 5-fluorouracil through autophagy inhibition: clinical and occupational implications. Int J Oncol 46:1893–900.
  • Lee J-H, Koo TH, Yoon H, et al. (2006). Inhibition of NF-kappa B activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochem Pharmacol 72:1311–21.
  • Li G, Wu X, Yang LE, et al. (2016). TLR4-mediated NF-kappaB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int J Mol Med 37:99–107.
  • Li J, Zhang J, Fu Y, et al. (2015). Dual pancreas- and lung-targeting therapy for local and systemic complications of acute pancreatitis mediated by a phenolic propanediamine moiety. J Control Release 212:19–29.
  • Li S, Chen B, Qu Y, et al. (2019). ROS-response-induced zwitterionic dendrimer for gene delivery. Langmuir 35:1613–1620.
  • Li Z, Li D, Li Q, et al. (2018). In situ low-immunogenic albumin-conjugating-corona guiding nanoparticles for tumor-targeting chemotherapy. Biomater Sci 6:2681–93.
  • Liu Q, Hua F, Deng C, et al. (2017). Protective and therapeutic effects of Danhong injection on acute pancreatitis-associated lung injury. Mol Med Rep 16:7603–8.
  • Liu R-H, Wen Y, Sun H-Y, et al. (2018). Abdominal paracentesis drainage ameliorates severe acute pancreatitis in rats by regulating the polarization of peritoneal macrophages. World J Gastroenterol 24:5131–5143.
  • Liu Y, et al. (2019). Protective effects of carbon monoxide releasing molecule2 on pancreatic function in septic mice. Mol Med Rep 19:3449–3458.
  • Lugea A, Waldron RT, Mareninova OA, et al. (2017). Human pancreatic acinar cells: proteomic characterization, physiologic responses, and organellar disorders in ex vivo Pancreatitis. Am J Pathol 187:2726–43.
  • Luo S, Li P, Li S, et al. (2017). N,N-dimethyl tertiary amino group mediated dual pancreas- and lung-targeting therapy against acute pancreatitis. Mol Pharm 14:1771–1781.
  • Lv C, He Y, Wei M, et al. (2020). CTRP3 ameliorates cerulein-induced severe acute pancreatitis in mice via SIRT1/NF-κB/p53 axis. Biosci Rep 40:BSR20200092.
  • Lyu Y, Wang B, Cheng Y, et al. (2019). Comparative efficacy of 9 major drugs for postendoscopic retrograde cholangiopancreatography pancreatitis: a network meta-analysis. Surgical Laparosc 29:426–32.
  • Ma Z, Song G, Liu D, et al. (2019). N-Acetylcysteine enhances the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation in rats with severe acute pancreatitis. Pancreatology 19:258–265.
  • Madhi R, Rahman M, Mörgelin M, Thorlacius H. (2019). c-Abl kinase regulates neutrophil extracellular trap formation, inflammation, and tissue damage in severe acute pancreatitis. J Leukocyte Biol 106:455–66.
  • Mahmoudi A, Jaafari MR, Ramezanian N, et al. (2019). BR2 and CyLoP1 enhance in-vivo SN38 delivery using pegylated PAMAM dendrimers. Int J Pharm 564:77–89.
  • Malla SR, Krueger B, Wartmann T, et al. (2019). Early trypsin activation develops independently of autophagy in caerulein-induced pancreatitis in mice. Cell Mol Life Sci 77:1811–1825.
  • Malleo G, Mazzon E, Siriwardena AK, et al. (2007). TNF-alpha as a therapeutic target in acute pancreatitis-lessons from experimental models. Scientific World J 7:431–48.
  • Malleo G, Mazzon E, Siriwardena K, et al. (2007). TNF-alpha as a therapeutic target in acute pancreatitis–lessons from experimental models. Scient World J 7:431–48.
  • Manohar M, Kandikattu HK, Verma AK, et al. (2018). IL-15 regulates fibrosis and inflammation in a mouse model of chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 315:G954–g965.
  • Matsuura S, Katsumi H, Suzuki H, et al. (2018a). l-cysteine and l-serine modified dendrimer with multiple reduced thiols as a kidney-targeting reactive oxygen species scavenger to prevent renal ischemia/reperfusion injury. Pharmaceutics 10:251.
  • Matsuura S, Katsumi H, Suzuki H, et al. (2018b). l-Serine-modified polyamidoamine dendrimer as a highly potent renal targeting drug carrier. Proc Natl Acad Sci USA 115:10511–10516.
  • Mercurio F, Manning AM. (1999). NF-kappaB as a primary regulator of the stress response. Oncogene 18:6163–71.
  • Miao Y-F, Li J, Zhang Y-M, et al. (2018). Sheng-jiang powder ameliorates obesity-induced pancreatic inflammatory injury via stimulating activation of the AMPK signalling pathway in rats. World J Gastroenterol 24:4448–61.
  • Miraghazadeh B, Cook MC. (2018). Nuclear factor-kappaB in autoimmunity: man and mouse. Front Immunol 9:613.
  • Murthy P, Singhi AD, Ross MA, et al. (2019). Enhanced neutrophil extracellular trap formation in acute pancreatitis contributes to disease severity and is reduced by chloroquine. Front Immunol 10:28,
  • O’Brien SJ, Omer E. (2019). Chronic pancreatitis and nutrition therapy. Nutr Clin Pract 34:S13–s26.
  • Ozaki KS, Kimura S, Murase N. (2012). Use of carbon monoxide in minimizing ischemia/reperfusion injury in transplantation. Transplant Rev 26:125–39.
  • Pan L-Y, Chen Y-F, Li H-C, et al. (2017). Dachengqi decoction attenuates intestinal vascular endothelial injury in severe acute pancreatitis in vitro and in vivo. Cell Physiol Biochem 44:2395–406.
  • Pandol SJ, Saluja AK, Imrie CW, et al. (2007). Acute pancreatitis: bench to the bedside. Gastroenterology 132:1127–51.
  • Pasari LP, Khurana A, Anchi P, et al. (2019). Visnagin attenuates acute pancreatitis via Nrf2/NFκB pathway and abrogates associated multiple organ dysfunction. Biomed Pharmacother 112:108629.
  • Pavel L, Bălan GG, Nicorescu A, et al. (2019). Split-dose or hybrid nonsteroidal anti-inflammatory drugs and N-acetylcysteine therapy for prevention of post-retrograde cholangiopancreatography pancreatitis. World J Clin Cases 7:300–310.
  • Portelli M, Jones CD. (2017). Severe acute pancreatitis: pathogenesis, diagnosis and surgical management. Hepatobiliary Pancreat Dis Int 16:155–9.
  • Qian Y, Chen Y, Wang L, et al. (2018). Effects of baicalin on inflammatory reaction, oxidative stress and PKDl and NF-kB protein expressions in rats with severe acute pancreatitis1. Acta Cir Bras 33:556–564.
  • Qiao Y, Wan J, Zhou L, et al. (2019). Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11:e1527,
  • Qiu Y, Palankar R, Echeverría M, et al. (2013). Design of hybrid multimodal poly(lactic-co-glycolic acid) polymer nanoparticles for neutrophil labeling, imaging and tracking. Nanoscale 5:12624–32.
  • Que RS, et al. (2010). Correlation of nitric oxide and other free radicals with the severity of acute pancreatitis and complicated systemic inflammatory response syndrome. Pancreas 39:536–40.
  • Ramanathan M, Aadam AA. (2019). Nutrition management in acute pancreatitis. Nutr Clin Pract 34:S7–s12.
  • Robles L, Vaziri ND, Li S, et al. (2016). Synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) ameliorates acute pancreatitis. Pancreas 45:720–9.
  • Rosas IO, Goldberg HJ, Collard HR, et al. (2018). A phase II clinical trial of low-dose inhaled carbon monoxide in idiopathic pulmonary fibrosis. Chest 153:94–104.
  • Saji H, Kuge Y, Tsutsumi D, et al. (1991). Accumulation and metabolism of [125I]HIPDM in the rat pancreas. Ann Nucl Med 5:157–61.
  • Sakuma Y, Kodama Y, Eguchi T, et al. (2018). Chemokine CXCL16 mediates acinar cell necrosis in cerulein induced acute pancreatitis in mice. Sci Rep 8:8829.
  • Seta T, Noguchi Y, Shikata S, et al. (2014). Treatment of acute pancreatitis with protease inhibitors administered through intravenous infusion: an updated systematic review and meta-analysis. BMC Gastroenterol 14:102,
  • Seta T, Noguchi Y, Shimada T, et al. (2004). Treatment of acute pancreatitis with protease inhibitors: a meta-analysis. Eur J Gastroenterol Hepatol 16:1287–93.
  • Shi C, Hou C, Zhu X, et al. (2018). SRT1720 ameliorates sodium taurocholate-induced severe acute pancreatitis in rats by suppressing NF-κB signalling. Biomed Pharmacother 108:50–7.
  • Singh L, Arora SK, Bakshi DK, et al. (2010). Potential role of CXCL10 in the induction of cell injury and mitochondrial dysfunction. Int J Exp Pathol 91:210–23.
  • Singh N, Ahuja V, Sachdev V, et al. (2019). Antioxidants for pancreatic functions in chronic pancreatitis: a double-blind randomized placebo-controlled pilot study. J Clin Gastroenterol 54:284–293.
  • Siriviriyakul P, Chingchit T, Klaikeaw N, et al. (2019). Effects of curcumin on oxidative stress, inflammation and apoptosis in L-arginine induced acute pancreatitis in mice. Heliyon 5:e02222.
  • Smith M, Kocher HM, Hunt BJ. (2010). Aprotinin in severe acute pancreatitis. Int J Clin Pract 64:84–92.
  • Steinle AU, Weidenbach H, Wagner M, et al. (1999). NF-kappaB/Rel activation in cerulein pancreatitis. Gastroenterology 116:420–30.
  • Sun H-J, Wang Y, Hao T, et al. (2016). Efficient GSH delivery using PAMAM-GSH into MPP-induced PC12 cellular model for Parkinson’s disease. Regen Biomater 3:299–307.
  • Sun W, Chen Y, Li H, et al. (2020). Material basis and molecular mechanisms of Dachengqi decoction in the treatment of acute pancreatitis based on network pharmacology. Biomed Pharmacother 121:109656.
  • Swain SM, Romac J M-J, Shahid RA, et al. (2020). TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation. J Clin Invest 130:2527–2541.
  • Taguchi K, Maruyama T, Otagiri M. (2018). Use of hemoglobin for delivering exogenous carbon monoxide in medicinal applications. Curr Med Chem 6:96–101.
  • Taguchi K, Nagao S, Maeda H, et al. (2018). Biomimetic carbon monoxide delivery based on hemoglobin vesicles ameliorates acute pancreatitis in mice via the regulation of macrophage and neutrophil activity. Drug Deliv 25:1266–1274.
  • Takagi T, Uchiyama K, Naito Y. (2015). The therapeutic potential of carbon monoxide for inflammatory bowel disease. Digestion 91:13–8.
  • Tando Y, Algül H, Wagner M, et al. (1999). Caerulein-induced NF-kappaB/Rel activation requires both Ca2+ and protein kinase C as messengers. Am J Physiol 277:G678–86.
  • Tang Y, Han Y, Liu L, et al. (2015). Protective effects and mechanisms of G5 PAMAM dendrimers against acute pancreatitis induced by caerulein in mice. Biomacromolecules 16:174–82.
  • Tao L, Lin X, Tan S, et al. (2019). β-Arrestin1 alleviates acute pancreatitis via repression of NF-κBp65 activation. J Gastroenterol Hepatol 34:284–92.
  • Tian B, Liu R, Chen S, et al. (2017). Mannose-coated gadolinium liposomes for improved magnetic resonance imaging in acute pancreatitis. Int J Nanomedicine 12:1127–1141.
  • Tóth E, Maléth J, Závogyán N, et al. (2019). Novel mitochondrial transition pore inhibitor N-methyl-4-isoleucine cyclosporin is a new therapeutic option in acute pancreatitis. J Physiol 597:5879–98.
  • Tsai K, Wang S-S, Chen T-S, et al. (1998). Oxidative stress: an important phenomenon with pathogenetic significance in the progression of acute pancreatitis. Gut 42:850–5.
  • Umapathy C, Raina A, Saligram S, et al. (2016). Natural history after acute necrotizing pancreatitis: a large US tertiary care experience. J Gastrointest Surg 20:1844–53.
  • Vipperla K, Papachristou GI, Easler J, et al. (2014). Risk of and factors associated with readmission after a sentinel attack of acute pancreatitis. Clin Gastroenterol Hepatol 12:1911–9.
  • Vonlaufen A, Apte MV, Imhof BA, et al. (2007). The role of inflammatory and parenchymal cells in acute pancreatitis. J Pathol 213:239–48.
  • W UK. (2005). UK guidelines for the management of acute pancreatitis. Gut 54:iii1–9.
  • Wang J, Wu L, Kou L, et al. (2016). Novel nanostructured enoxaparin sodium-PLGA hybrid carriers overcome tumor multidrug resistance of doxorubicin hydrochloride. Int J Pharm 513:218–26.
  • Wang N, Zhang F, Yang L, et al. (2017). Resveratrol protects against L-arginine-induced acute necrotizing pancreatitis in mice by enhancing SIRT1-mediated deacetylation of p53 and heat shock factor 1. Int J Mol Med 40:427–37.
  • Wang Q, Bai L, Luo S, et al. (2020). TMEM16A Ca-activated Cl channel inhibition ameliorates acute pancreatitis via the IPR/Ca/NFκB/IL-6 signaling pathway. J Adv Res 23:25–35.
  • Waxler B, Rabito SF. (2003). Aprotinin: a serine protease inhibitor with therapeutic actions: its interaction with ACE inhibitors. Curr Pharm Des 9:777–87.
  • Wen L, Voronina S, Javed MA, et al. (2015). Inhibitors of ORAI1 prevent cytosolic calcium-associated injury of human pancreatic acinar cells and acute pancreatitis in 3 mouse models. Gastroenterology 149:481–927.
  • Weng TI, Wu HY, Chen BL, et al. (2012). Honokiol attenuates the severity of acute pancreatitis and associated lung injury via acceleration of acinar cell apoptosis. Shock 37:478–84.
  • Werner J, Dragotakes SC, Fernandez-del Castillo C, et al. (1998). Technetium-99m-labeled white blood cells: a new method to define the local and systemic role of leukocytes in acute experimental pancreatitis. Ann Surg 227:86–94.
  • Wu J, Zhang R, Hu G, et al. (2018). Carbon monoxide impairs CD11b + Ly-6Chi monocyte migration from the blood to inflamed pancreas via inhibition of the CCL2/CCR2 axis. J Immunol 200:2104–2114.
  • Xiong J, Wang K, Yuan C, et al. (2017). Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects. Int J Mol Med 39:113–125.
  • Xu H-L, Fan Z-L, ZhuGe D-L, et al. (2018). Ratiometric delivery of two therapeutic candidates with inherently dissimilar physicochemical property through pH-sensitive core-shell nanoparticles targeting the heterogeneous tumor cells of glioma. Drug Deliv 25:1302–1318.
  • Yadav D, O'Connell M, Papachristou GI. (2012). Natural history following the first attack of acute pancreatitis. Am J Gastroenterol 107:1096–103.
  • Yamamoto K, Som P, Srivastava SC, et al. (1985). Pancreas accumulation of radioiodinated HIPDM in mice and rats. J Nucl Med 26:765–9.
  • Yan H, Shao D, Lao Y-H, et al. (2019). Engineering cell membrane-based nanotherapeutics to target inflammation. Adv Sci 6:1900605.
  • Yan Y, Lu B, Li P, et al. (2017). NOD receptor and TLR9 modulation in severe acute pancreatitis-induced intestinal injury. Mol Med Rep 16:8471–6.
  • Yang C, Hu T, Cao H, et al. (2015). Facile construction of chloroquine containing PLGA-based pDNA delivery system for efficient tumor and pancreatitis targeting in vitro and in vivo. Mol Pharm 12:2167–79.
  • Yang C, Wu T, Qin Y, et al. (2018). A facile doxorubicin-dichloroacetate conjugate nanomedicine with high drug loading for safe drug delivery. Int J Nanomedicine 13:1281–1293.
  • Yang ZW, Meng XX, Xu P. (2015). Central role of neutrophil in the pathogenesis of severe acute pancreatitis. J Cell Mol Med 19:2513–20.
  • Yao Q, Chen R, Ganapathy V, et al. (2020). Therapeutic application and construction of bilirubin incorporated nanoparticles. J Control Release 328:407–424.
  • Yao Q, Choi JH, Dai Z, et al. (2017). Improving tumor specificity and anticancer activity of dasatinib by dual-targeted polymeric micelles. ACS Appl Mater Interfaces 9:36642–36654.
  • Yao Q, Dai Z, Hoon Choi J, et al. (2017). Building stable MMP2-responsive multifunctional polymeric micelles by an all-in-one polymer-lipid conjugate for tumor-targeted intracellular drug delivery. ACS Appl Mater Interfaces 9:32520–32533.
  • Yao Q, Huang Z-W, Zhai Y-Y, et al. (2020). Localized controlled release of bilirubin from β-cyclodextrin-conjugated ε-polylysine to attenuate oxidative stress and inflammation in transplanted islets. ACS Appl Mater Interfaces 12:5462–75.
  • Yao Q, Jiang X, Huang Z-W, et al. (2019). Bilirubin improves the quality and function of hypothermic preserved islets by its antioxidative and anti-inflammatory effect. Transplantation 103:2486–96.
  • Yao Q, Jiang X, Kou L, et al. (2019). Pharmacological actions and therapeutic potentials of bilirubin in islet transplantation for the treatment of diabetes. Pharmacol Res 145:104256.
  • Yao Q, Kou L, Tu Y, et al. (2018). MMP-responsive ‘smart’ drug delivery and tumor targeting. Trends Pharmacol Sci 39:766–781.
  • Yao Q, Lan Q-H, Jiang X, et al. (2020). Bioinspired biliverdin/silk fibroin hydrogel for antiglioma photothermal therapy and wound healing. Theranostics 10:11719–11736.
  • Yao Q, Liu Y, Kou L, et al. (2019). Tumor-targeted drug delivery and sensitization by MMP2-responsive polymeric micelles. Nanomedicine 19:71–80.
  • Yao Q, Sun R, Bao S, et al. (2020). Bilirubin protects transplanted islets by targeting ferroptosis. Front Pharmacol 11:907.
  • Yao Q, Tao X, Tian B, et al. (2014). Improved oral bioavailability of core-shell structured beads by redispersion of the shell-forming nanoparticles: preparation, characterization and in vivo studies. Colloids Surf B Biointerfaces 113:92–100.
  • Yılmaz EE, Bozdaği Z, Ibiloğlui I, et al. (2016). Therapeutic effects of ellagic acid on L-arginin ınduced acute pancreatitis. Acta Cirurgica Brasileira 31:396–401.
  • Yu M, Yang Z, Zhu Y, Lu N. (2014). Efficacy of glucocorticoids in rodents of severe acute pancreatitis: a meta-analysis. Int J Clin Experi Pathol 7:3647–61.
  • Yu S, Wang M, Guo X, et al. (2018). Curcumin attenuates inflammation in a severe acute pancreatitis animal model by regulating TRAF1/ASK1 signaling. Med Sci Monit 24:2280–6.
  • Zhan X, Wan J, Zhang G, et al. (2019). Elevated intracellular trypsin exacerbates acute pancreatitis and chronic pancreatitis in mice. Am J Physiol Gastrointest Liver Physiol 316:G816–g825.
  • Zhang F-H, Sun Y-H, Fan K-L, et al. (2017). Protective effects of heme oxygenase-1 against severe acute pancreatitis via inhibition of tumor necrosis factor-α and augmentation of interleukin-10. BMC Gastroenterol 17:100.
  • Zhang GX. (2019). Qingyi Decoction amerliorates acute biliary pancreatitis by targeting Gpbar1/NF-kb pathway. Front Biosci 24:833–48. ,
  • Zhang JX, Dang C, Zhang Y, et al. (2010). MRI shows clodronate-liposomes attenuating liver injury in rats with severe acute pancreatitis. Hepatobiliary Pancreat Dis Int 9:192–200.
  • Zhang Q, Tao X, Xia S, et al. (2019). Emodin attenuated severe acute pancreatitis via the P2X ligand-gated ion channel 7/NOD‐like receptor protein 3 signaling pathway. Oncol Rep 41:270–8.
  • Zhang XP, Jiang J, Yu Y-P, et al. (2010). Effect of Danshen on apoptosis and NF-kappaB protein expression of the intestinal mucosa of rats with severe acute pancreatitis or obstructive jaundice. Hepatobiliary Pancreat Dis Int 9:537–46.
  • Zhao S, Yang J, Liu T, et al. (2018). Dexamethasone inhibits NF–кBp65 and HMGB1 expression in the pancreas of rats with severe acute pancreatitis. Mol Med Rep 18:5345–5352.
  • Zhao YZ, Lin M-T, Lan Q-Z, et al. (2020). Silk fibroin-modified disulfiram/zinc oxide nanocomposites for pH triggered release of Zn2+ and synergistic antitumor efficacy. Mol Pharm 17:3857–3869.
  • Zheng Y, Zhang L, Tian R, et al. (2015). The effect of Xuebijing injection for severe acute pancreatitis: a meta analysis. Zhonghua Wei Zhong Bing ji Jiu yi Xue 27:682–6.
  • Zhou Q, You C, Ling Y, et al. (2019). pH and thermo dual stimulus-responsive liposome nanoparticles for targeted delivery of platinum-acridine hybrid agent. Life Sci 217:41–48.
  • Zhou X, Cao X, Tu H, et al. (2019). Inflammation-targeted delivery of celastrol via neutrophil membrane-coated nanoparticles in the management of acute pancreatitis. Mol Pharm 16:1397–1405.
  • Zhou Y, Wang L, Huang X, et al. (2016). Add-on effect of crude rhubarb to somatostatin for acute pancreatitis: a meta-analysis of randomized controlled trials. J Ethnopharmacol 194:495–505.
  • Zhu H, Huang L, Zhu S, et al. (2016). Regulation of autophagy by systemic admission of microRNA-141 to target HMGB1 in l-arginine-induced acute pancreatitis in vivo. Pancreatology 16:337–46.