3,949
Views
25
CrossRef citations to date
0
Altmetric
Research Articles

Development and optimization of curcumin analog nano-bilosomes using 21.31 full factorial design for anti-tumor profiles improvement in human hepatocellular carcinoma: in-vitro evaluation, in-vivo safety assay

, , , , &
Pages 714-727 | Received 11 Jan 2022, Accepted 14 Feb 2022, Published online: 04 Mar 2022

References

  • Abbas H, El-Deeb NM, Zewail M. (2021). PLA-coated Imwitor® 900 K-based herbal colloidal carriers as novel candidates for the intra-articular treatment of arthritis. Pharm Dev Technol 26:682–92.
  • Abbas H, Kamel R, El-Sayed N. (2018). Dermal anti-oxidant, anti-inflammatory and anti-aging effects of Compritol ATO-based Resveratrol colloidal carriers prepared using mixed surfactants. Int J Pharm 541:37–47.
  • Abdelbary AA, Abd-Elsalam WH, Al-Mahallawi AM. (2016). Fabrication of novel ultra deformable bilosomes for enhanced ocular delivery of terconazole: in vitro characterization, ex vivo permeation and in vivo safety assessment. Int J Pharm 513:688–96.
  • Abudeif A. (2019). Epidemiology and risk factors of hepatocellular carcinoma in Egypt. Sohag Med J 23:8–12.
  • Aburahma MH. (2016). Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv 23:1847–67.
  • Ahmed S, Kassem MA, Sayed S. (2020). Bilosomes as promising nanovesicular carriers for improved transdermal delivery: construction, in vitro optimization, ex vivo permeation and in vivo evaluation. Int J Nanomedicine 15:9783–98.
  • Al-Madboly LA, El-Deeb NM, Kabbash A, et al. (2020). Purification, characterization, identification, and anticancer activity of a circular bacteriocin from Enterococcus thailandicus. Front Bioeng Biotechnol 8:450.
  • Al-Mahallawi AM, Abdelbary AA, Aburahma MH. (2015). Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm 485:329–40.
  • Bimonte S, Barbieri A, Leongito M, et al. (2016). Curcumin anticancer studies in pancreatic cancer. Nutrients 8:433.
  • Borborema SET, Osso Junior JA, Andrade Junior HF, et al. (2016). Antimonial drugs entrapped into phosphatidylserine liposomes: physicochemical evaluation and antileishmanial activity. Rev Soc Bras Med Trop 49:196–203.
  • Cao B, Wang Y, Ding K, et al. (2012). Synthesis of the pyridinyl analogues of dibenzylideneacetone (pyr-dba) via an improved Claisen-Schmidt condensation, displaying diverse biological activities as curcumin analogues. Org Biomol Chem 10:1239–45.
  • Chen M, Du Z-Y, Zheng X, et al. (2018). Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res 13:742–52.
  • Conacher M, Alexander J, Brewer JM. (2001). Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine 19:2965–74.
  • Darvesh AS, Aggarwal BB, Bishayee A. (2012). Curcumin and liver cancer: a review. Curr Pharm Biotechnol 13:218–28.
  • El-Nassan HB. (2014). Synthesis and structure activity relationship study of N-substituted 3,5-diarylidenepiperidin-4-ones as potential antitumor agents. Anticancer Agents Med Chem 14:319–30.
  • El-Telbany DFA, El-Telbany RFA, Zakaria S, et al. (2021). Formulation and assessment of hydroxyzine HCL solid lipid nanoparticles by dual emulsification technique for transdermal delivery. Biomed Pharmacother 143:112130.
  • Kim M-K, Mok H-J, Chong Y-H. (2012). Increased water solubility of the curcumin derivatives via substitution with an acetoxy group at the central methylene moiety. Bull Korean Chem Soc 33:2849–50.
  • Kim Y, Clifton P. (2018). Curcumin, cardiometabolic health and dementia. IJERPH 15:2093.
  • Koch A, Tamez P, Pezzuto J, et al. (2005). Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J Ethnopharmacol 101:95–9.
  • Liang G, Shao L, Wang Y, et al. (2009). Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg Med Chem 17:2623–31.
  • Liu H-T, Ho Y-S. (2018). Anticancer effect of curcumin on breast cancer and stem cells. Food Sci Hum Wellness 7:134–7.
  • Lohr HF, Goergen B, zum Biischenfelde K-HM, et al. (1995). HCV replication in mononuclear cells stimulates anti‐HCV‐secreting B cells and reflects nonresponsiveness to interferon. J Med Virol 46:314–20.
  • López‐Lázaro M. (2008). Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 52:S103–S27.
  • Mehta K, Pantazis P, McQueen T, et al. (1997). Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 8:470–81.
  • Miere F, Vicas SI, Timar AV, et al. (2021). Preparation and characterization of two different liposomal formulations with bioactive natural extract for multiple applications. Processes 9:432.
  • Modzelewska A, Pettit C, Achanta G, et al. (2006). Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorg Med Chem 14:3491–5.
  • Mohammed ES, El-Beih NM, El-Hussieny EA, et al. (2021). Effects of free and nanoparticulate curcumin on chemically induced liver carcinoma in an animal model. Arch Med Sci 17:218–27.
  • Mohsen AM, Salama A, Kassem AA. (2020). Development of acetazolamide loaded bilosomes for improved ocular delivery: preparation, characterization and in vivo evaluation. J Drug Delivery Sci Technol 59:101910.
  • Notarbartolo M, Poma P, Perri D, et al. (2005). Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett 224:53–65.
  • Priya MRK, Iyer PR. (2020). Antiproliferative effects on tumor cells of the synthesized gold nanoparticles against Hep2 liver cancer cell line. Egypt Liver J 10:1–12.
  • Priyadarsini KI. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19:20091–112.
  • Rafiee Z, Nejatian M, Daeihamed M, et al. (2019). Application of different nanocarriers for encapsulation of curcumin. Crit Rev Food Sci Nutr 59:3468–97.
  • Rahman MH, Ramanathan M, Sankar V. (2014). Preparation, characterization and in vitro cytotoxicity assay of curcumin loaded solid lipid nanoparticle in IMR32 neuroblastoma cell line. Pak J Pharma Sci 27:1281–5.
  • Ramalingam P, Yoo SW, Ko YT. (2016). Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res Int 84:113–9.
  • Rashed WM, Kandeil MAM, Mahmoud MO, et al. (2020). Hepatocellular carcinoma (HCC) in Egypt: a comprehensive overview. J Egypt Natl Cancer Inst 32:1–11.
  • Ren B, Luo S, Tian X, et al. (2018). Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling. Oncol Rep 40:895–901.
  • Ribeiro A, Sosnik A, Chiappetta DA, et al. (2012). Single and mixed poloxamine micelles as nanocarriers for solubilization and sustained release of ethoxzolamide for topical glaucoma therapy. J R Soc Interface 9:2059–69.
  • Saengkrit N, Saesoo S, Srinuanchai W, et al. (2014). Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf B Biointerfaces 114:349–56.
  • Mbese Z, Khwaza V, Aderibigbe BA. (2019). Curcumin and its derivatives as potential therapeutic agents in prostate, colon and breast cancers.Molecules 24:4386
  • Samrot AV, Burman U, Philip SA, et al. (2018). Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery. Inf Med Unlocked 10:159–82.
  • Sawant V, Bamane S. (2018). PEG-beta-cyclodextrin functionalized zinc oxide nanoparticles show cell imaging with high drug payload and sustained pH responsive delivery of curcumin in to MCF-7 cells. J Drug Delivery Sci Technol 43:397–408.
  • Shaikh J, Ankola DD, Beniwal V, et al. (2009). Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37:223–30.
  • Shi J, Zhang X, Shi T, et al. (2017). Antitumor effects of curcumin in human bladder cancer in vitro. Oncol Lett 14:1157–61.
  • Song L, Shen Y, Hou J, et al. (2011). Polymeric micelles for parenteral delivery of curcumin: preparation, characterization and in vitro evaluation. Colloids Surf A 390:25–32.
  • Soni G, Yadav KS. (2014). High encapsulation efficiency of poloxamer-based injectable thermoresponsive hydrogels of etoposide. Pharm Dev Technol 19:651–61.
  • Spicer PT, Hayden KL, Lynch ML, et al. (2001). Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir 17:5748–56.
  • Spicer PT. (2005). Progress in liquid crystalline dispersions: cubosomes. Curr Opin Colloid Interface Sci 10:274–9.
  • Suwannateep N, Banlunara W, Wanichwecharungruang SP, et al. (2011). Mucoadhesive curcumin nanospheres: biological activity, adhesion to stomach mucosa and release of curcumin into the circulation. J Control Release 151:176–82.
  • Suwantong O, Opanasopit P, Ruktanonchai U, et al. (2007). Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48:7546–57.
  • Syng-Ai C, Kumari AL, Khar A. (2004). Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol Cancer Ther 3:1101–8.
  • Tavano L, Muzzalupo R, Picci N, et al. (2014). Co-encapsulation of antioxidants into niosomal carriers: gastrointestinal release studies for nutraceutical applications. Colloids Surf B Biointerfaces 114:82–8.
  • Tefas LR, Sylvester B, Tomuta I, et al. (2017). Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach. Drug Des Devel Ther 11:1605–21.
  • Teiten M-H, Eifes S, Dicato M, et al. (2010). Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins 2:128–62.
  • Tiyaboonchai W, Tungpradit W, Plianbangchang P. (2007). Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int J Pharm 337:299–306.
  • Van Nong H, Hung LX, Thang PN, et al. (2016). Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the northern Vietnam. SpringerPlus 5:1147,
  • Waglewska E, Pucek-Kaczmarek A, Bazylińska U. (2020). Novel surface-modified bilosomes as functional and biocompatible nanocarriers of hybrid compounds. Nanomaterials 10:2472.
  • Walters DK, Muff R, Langsam B, et al. (2008). Cytotoxic effects of curcumin on osteosarcoma cell lines. Invest New Drugs 26:289–97.
  • Wang H, Hao L, Wang P, et al. (2017). Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocolloids 63:437–46.
  • Youssef KM, El-Sherbeny MA, El-Shafie FS, et al. (2004). Synthesis of curcumin analogues as potential antioxidant, cancer chemopreventive agents. Arch Pharm 337:42–54.
  • Zafar A, Alruwaili NK, Imam SS, et al. (2021). Bioactive Apigenin loaded oral nano bilosomes: formulation optimization to preclinical assessment. Saudi Pharma J 29:269–79.
  • Zafar A, Alruwaili NK, Imam SS, et al. (2021). Development and evaluation of luteolin loaded pegylated bilosome: optimization, in vitro characterization, and cytotoxicity study. Drug Deliv 28:2562–73.
  • Zewail M, Nafee N, Boraie N. (2021). Intra-articular dual drug delivery for synergistic rheumatoid arthritis treatment. J Pharm Sci 110:2808–22.
  • Zhao L-Y, Zhang W-M. (2017). Recent progress in drug delivery of pluronic P123: pharmaceutical perspectives. J Drug Target 25:471–84.