4,288
Views
34
CrossRef citations to date
0
Altmetric
Review Article

Nanodelivery of essential oils as efficient tools against antimicrobial resistance: a review of the type and physical-chemical properties of the delivery systems and applications

, , , , , & show all
Pages 1007-1024 | Received 20 Jan 2022, Accepted 14 Mar 2022, Published online: 01 Apr 2022

References

  • Alam P, Shakeel F, Anwer MK, et al. (2018). Wound healing study of eucalyptus essential oil containing nanoemulsion in rat model. J Oleo Sci 67:957–68.
  • Almeida KB, Ramos AS, Nunes JBB, et al. (2019). PLGA nanoparticles optimized by Box-Behnken for efficient encapsulation of therapeutic Cymbopogon citratus essential oil. Colloids Surf B Biointerfaces 181:935–42.
  • Ambrosio CMS, de Alencar SM, de Sousa RLM, et al. (2017). Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Ind Crops Prod 97:128–36.
  • Amiri N, Afsharmanesh M, Salarmoini M, et al. (2020). Nanoencapsulation (in vitro and in vivo) as an efficient technology to boost the potential of garlic essential oil as alternatives for antibiotics in broiler nutrition. Animal 15:100022.
  • Bacakova L, Pajorova J, Bacakova M, et al. (2019). Versatile application of nanocellulose: from industry to skin tissue engineering and wound healing. Nanomaterials 9:164.
  • Bagheri R, Ariaii P, Motamedzadegan A. (2021). Characterization, antioxidant and antibacterial activities of chitosan nanoparticles loaded with nettle essential oil. Food Measure 15:1395–402.
  • Bano I, Arshad M, Yasin T, et al. (2017). Chitosan: a potential biopolymer for wound management. Int J Biol Macromol 102:380–83.
  • Baptista-Silva S, Borges S, Ramos OL, et al. (2020). The progress of essential oils as potential therapeutic agents: a review. J Essent Oil Res 32:279–95.
  • Basavegowda N, Kumar Patra J, Baek KH. (2020). Essential oils and mono/Bi/tri-metallic nanocomposites as alternative sources of antimicrobial agents to combat multidrug-resistant pathogenic microorganisms: an overview. Molecules 25:1058.
  • Bazana MT, Franco Codevilla C, de Menezes CR. (2019). Nanoencapsulation of bioactive compounds: challenges and perspectives. Curr Opin Food Sci 26:47–56.
  • Castro-Rosas J, Ferreira-Grosso CR, Gómez-Aldapa CA, et al. (2017). Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food – A review. Food Res Int 102:575–87.
  • Cerbu C, Kah M, White JC, et al. (2021). Fate of biodegradable engineered nanoparticles used in veterinary medicine as delivery systems from a one health perspective. Molecules 26:523.
  • Chaudhari AK, Singh VK, Deepika SD, et al. (2020). Antimicrobial, aflatoxin B1 inhibitory and lipid oxidation suppressing potential of anethole-based chitosan nanoemulsion as novel preservative for protection of stored maize. Food Bioprocess Technol 13:1462–77.
  • Chouhan S, Sharma K, Guleria S. (2017). Antimicrobial activity of some essential oils – present status and future perspectives. Medicines 4:58–58.
  • Cinteza L, Scomoroscenco C, Voicu S, et al. (2018). Chitosan-stabilized ag nanoparticles with superior biocompatibility and their synergistic antibacterial effect in mixtures with essential oils. Nanomaterials 8:826.
  • da Rosa CG, de Oliveira Brisola Maciel MV, de Carvalho SM, et al. (2015). Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes. Colloids Surf, A 481:337–44.
  • da Silva Gündel S, de Souza ME, Quatrin PM, et al. (2018). Nanoemulsions containing Cymbopogon flexuosus essential oil: development, characterization, stability study and evaluation of antimicrobial and antibiofilm activities. Microb Pathog 118:268–76.
  • Danhier F, Ansorena E, Silva JM, et al. (2012). PLGA-based nanoparticles: an overview of biomedical applications. In J Controll Release 161:505–22.
  • Darpentigny C, Marcoux PR, Menneteau M, et al. (2020). Antimicrobial cellulose nanofibril porous materials obtained by supercritical impregnation of thymol. ACS Appl Bio Mater 3:2965–75.
  • Dodane V, Vilivalam V. (1998). Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1:246–53.
  • Doskocz J, Dałek P, Foryś A, et al. (2020). The effect of lipid phase on liposome stability upon exposure to the mechanical stress. Biochimica et Biophysica Acta Biomembranes 1862:183361.
  • Esfandyari-Manesh M, Ghaedi Z, Asemi M, et al. (2013). Study of antimicrobial activity of anethole and carvone loaded PLGA nanoparticles. J Pharm Res 7:290–95.
  • Esmaeili A, Asgari A. (2015). In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. Int J Biol Macromol 81:283–90.
  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–47.
  • Fazly Bazzaz BS, Khameneh B, Namazi N, et al. (2018). Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: the novel nanoparticulate systems with broad-spectrum antimicrobial activity. Lett Appl Microbiol 66:506–13.
  • García-Díaz M, Patiño B, Vázquez C, Gil-Serna J. (2019). A novel niosome-encapsulated essential oil formulation to prevent aspergillus flavus growth and aflatoxin contamination of maize grains during storage. Toxins 11:646.
  • Ghodrati M, Farahpour MR, Hamishehkar H. (2019). Encapsulation of Peppermint essential oil in nanostructured lipid carriers: in-vitro antibacterial activity and accelerative effect on infected wound healing. Colloids Surf A 564:161–69.
  • Gomes C, Moreira RG, Castell-Perez E. (2011). Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J Food Sci 76:N16–N24.
  • Gonçalves da Rosa C, Zapelini de Melo AP, Sganzerla WG, et al. (2020). Application in situ of zein nanocapsules loaded with Origanum vulgare Linneus and Thymus vulgaris as a preservative in bread. Food Hydrocolloids 99:105339.
  • Gündel S. d S, Nunes de Godoi S, Santos RCV, et al. (2020). In vivo antifungal activity of nanoemulsions containing eucalyptus or lemongrass essential oils in murine model of vulvovaginal candidiasis. J Drug Delivery Sci Technol 57:101762.
  • Hadidi M, Pouramin S, Adinepour F, et al. (2020). Chitosan nanoparticles loaded with clove essential oil: characterization, antioxidant and antibacterial activities. Carbohydr Polym 236:116075.
  • Halevas E, Nday CM, Chatzigeorgiou E, et al. (2017). Chitosan Chitosan encapsulation of essential oil “cocktails” with well-defined binary Zn(II)-Schiff base species targeting antibacterial medicinal nanotechnology. J Inorg Biochem 176:24–37.
  • Hasheminejad N, Khodaiyan F, Safari M. (2019). Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem 275:113–22.
  • Hassani A, Mahmood S, Enezei HH, et al. (2020). Formulation, characterization and biological activity screening of sodium alginate-gum Arabic nanoparticles loaded with curcumin. Molecules 25:2244.
  • Hill LE, Taylor TM, Gomes C. (2013). Antimicrobial Efficacy of Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped cinnamon bark extract against listeria monocytogenes and salmonella typhimurium. J Food Sci 78:N626–N632.
  • Horky P, Skalickova S, Smerkova K, Skladanka J. (2019). Essential oils as a feed additives: pharmacokinetics and potential toxicity in monogastric animals. Animals 9:352.
  • Hosseini SA, Meimandipour A. (2018). Feeding broilers with thyme essential oil loaded in chitosan nanoparticles: an efficient strategy for successful delivery. British Poul Sci 59:669–78.
  • Hosseini SF, Zandi M, Rezaei M, Farahmandghavi F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr Polym 95:50–56.
  • Iannitelli A, Grande R, di Stefano A, et al. (2011). Potential antibacterial activity of carvacrol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int J Mol Sci 12:5039–51.
  • Ibrahim D, Abdelfattah-Hassan A, Badawi M, et al. (2021). Thymol nanoemulsion promoted broiler chickens growth, gastrointestinal barrier and bacterial community and conferred protection against Salmonella Typhimurium. Sci Rep 11:7742.
  • Jamil B, Abbasi R, Abbasi S, et al. (2016). Encapsulation of cardamom essential oil in chitosan nano-composites: in-vitro efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity studies. Front Microbiol 7:1580.
  • Kalagatur NK, Nirmal Ghosh OS, Sundararaj N, Mudili V. (2018). Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front Pharmacol 9:610.
  • Katopodi A, Detsi A. (2021). Solid lipid nanoparticles and nanostructured lipid carriers of natural products as promising systems for their bioactivity enhancement: the case of essential oils and flavonoids. Colloids Surf A 630:127529.
  • Keawchaoon L, Yoksan R. (2011). Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf B Biointerfaces 84:163–71.
  • Khezri K, Farahpour MR, Rad SM. (2020). Efficacy of Mentha pulegium essential oil encapsulated into nanostructured lipid carriers as an in vitro antibacterial and infected wound healing agent. Colloids Surf, A 589:124414.
  • Kujur A, Kiran S, Dubey NK, Prakash B. (2017). Microencapsulation of Gaultheria procumbens essential oil using chitosan-cinnamic acid microgel: improvement of antimicrobial activity, stability and mode of action. LWT Food Sci Technol 86:132–38.
  • Liakos I, Rizzello L, Scurr DJ, et al. (2014). All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int J Pharm 463:137–45.
  • Luis AIS, Campos EVR, De Oliveira JL, et al. (2020). Zein nanoparticles impregnated with eugenol and garlic essential oils for treating fish pathogens. ACS Omega 5:15557–66.
  • Łukawski M, Dałek P, Borowik T, et al. (2020). New oral liposomal vitamin C formulation: properties and bioavailability. J Liposome Res 30:227–34.
  • Manus J-M. (2019). Antibiorésistance, phénomène inquiétant. Revue Francophone Des Laborat 2019:18–19.
  • Merino N, Berdejo D, Bento R, et al. (2019). Antimicrobial efficacy of Thymbra capitata (L.) Cav. essential oil loaded in self-assembled zein nanoparticles in combination with heat. Ind Crops Prod 133:98–104.
  • Mohammadi Gheisar M, Hosseindoust A, Kim IH. (2015). Evaluating the effect of microencapsulated blends of organic acids and essential oils in broiler chickens diet. J Appl Poult Res 24:511–19.
  • Mohammadi A, Hosseini SM, Hashemi M. (2020). Emerging chitosan nanoparticles loading-system boosted the antibacterial activity of Cinnamomum zeylanicum essential oil. Ind Crops Prod 155:112824.
  • Packia Lekshmi NCJ, Benarcin Sumi S, Viveka S, et al. (2012). Antibacterial activity of nanoparticles from Allium sp. J Microbiol Biotechnol Res 2:115–19.
  • Nallamuthu I, Parthasarathi A, Khanum F. (2013). Thymoquinone-loaded PLGA nanoparticles: antioxidant and anti-microbial properties. Int Curr Pharm J 2:202–207..
  • Naseema A, L, Kovooru, AK, Behera, KP, Pramodh Kumar, et al. 2021. A critical review of synthesis procedures, applications and future potential of nanoemulsions. Adv Colloid Interface Sci. 287:102318.
  • Nouri A. (2019). Chitosan nano-encapsulation improves the effects of mint, thyme, and cinnamon essential oils in broiler chickens. Br Poultry Sci 60:530–38.
  • Pandey A. (2021). Pharmaceutical and biomedical applications of cellulose nanofibers: a review. Environ Chem Lett 19:2043–2055.
  • Paula Zapelini de Melo A, Gonçalves da Rosa C, Sganzerla WG, et al. (2019). Syntesis and characterization of zein nanoparticles loaded with essential oil of Ocimum gratissimum and Pimenta racemosa. Materials Research Express 6:095084.
  • Paulo F, Santos L. (2017). Design of experiments for microencapsulation applications: a review. Mater Sci Eng C 77:1327–40.
  • Qin L, He Y, Zhao X, et al. (2020). Preparation, characterization, and in vitro sustained release profile of resveratrol-loaded silica aerogel. Molecules 25:2752.
  • Raphaël KJ, Meimandipour A. (2017). Antimicrobial activity of chitosan film forming solution enriched with essential oils; an in vitro assay. Iran J Biotechnol 15:111–19.
  • Rinaldi F, Maurizi L, Conte AL, et al. (2021). Nanoemulsions of Satureja montana essential oil: antimicrobial and antibiofilm activity against avian Escherichia coli strains. Pharmaceutics 13:134–22.
  • Rosa JM, Bicudo Bonato L, Mancuso CB, et al. (2018). Curativos medicamentosos antimicrobiano contendo óleos essenciais e oleoresinas de algumas pimentas encapsulados em filmes de alginato de sódio. Ciencia Rural 48:1–5.
  • Rozman NAS, Tong WY, Leong CR, et al. (2020). Homalomena pineodora essential oil nanoparticle inhibits diabetic wound pathogens. Sci Rep 10:3307.
  • Sabtu N, Enoch DA, Brown NM. (2015). Antibiotic resistance: what, why, where, when and how? Br Med Bull 116:105–113.
  • Saporito F, Sandri G, Bonferoni MC, et al. (2018). Essential oil-loaded lipid nanoparticles for wound healing. Int J Nanomedicine 13:175–86.
  • Scandorieiro S, de Camargo LC, Lancheros CAC, et al. (2016). Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front Microbiol 7:760.
  • Sebaaly C, Jraij A, Fessi H, et al. (2015). Preparation and characterization of clove essential oil-loaded liposomes. Food Chem 178:52–62.
  • Sharma S, Parmar A, Kori S, Sandhir R. (2016). PLGA-based nanoparticles: a new paradigm in biomedical applications. TrAC Trends Analyt Chem 80:30–40.
  • Shetta A, Kegere J, Mamdouh W. (2019). Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int J Biol Macromol 126:731–42.
  • Shin J, Na K, Shin S, et al. (2019). Biological activity of thyme white essential oil stabilized by cellulose nanocrystals. Biomolecules 9:799.
  • Simsek M, Eke B, Demir H. (2020). Characterization of carboxymethyl cellulose-based antimicrobial films incorporated with plant essential oils. Int J Biol Macromol 163:2172–79.
  • Sotelo-Boyás M, Correa-Pacheco Z, Bautista-Baños S, Gómez y Gómez Y. (2017). Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria. Int J Biol Macromol 103:409–14.
  • Souza CF, Baldissera MD, Santos RCV, et al. (2017). Nanotechnology improves the therapeutic efficacy of Melaleuca alternifolia essential oil in experimentally infected Rhamdia quelen with Pseudomonas aeruginosa. Aquaculture 473:169–71.
  • Suganya V, Anuradha V. (2017). Microencapsulation and nanoencapsulation: a review. Inter J Pharmaceutical Clin Res 9:233–239.
  • Sugumar S, Mukherjee A, Chandrasekaran N. (2015). Eucalyptus oil nanoemulsion-impregnated chitosan film: antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro. Int J Nanomed 10:67–75.
  • Sun X, Cameron RG, Bai J. (2019). Microencapsulation and antimicrobial activity of carvacrol in a pectin-alginate matrix. Food Hydrocolloids 92:69–73.
  • Wang W, Meng Q, Li Q, et al. (2020). Chitosan derivatives and their application in biomedicine. IJMS 21:487. In MDPI AG.
  • Wu Y, Luo Y, Wang Q. (2012). Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid-liquid dispersion method., LWT Food Sci Technol 48:283–90.
  • Yadav A, Kujur A, Kumar A, et al. (2020). Encapsulation of Bunium persicum essential oil using chitosan nanopolymer: preparation, characterization, antifungal assessment, and thermal stability. Int J Biol Macromol 142:172–80.
  • Yahya EB, Jummaat F, Amirul AA, et al. (2020). A review on revolutionary natural biopolymer-based aerogels for antibacterial delivery. Antibiotics 9:648–25. In MDPI AG.
  • Zhang Z, Wang X, Gao M, et al. (2020). Sustained release of an essential oil by a hybrid cellulose nanofiber foam system. Cellulose 27:2709–21.