3,693
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Self-assembling peptides-based nano-cargos for targeted chemotherapy and immunotherapy of tumors: recent developments, challenges, and future perspectives

, , &
Pages 1184-1200 | Received 31 Jan 2022, Accepted 21 Mar 2022, Published online: 09 Apr 2022

References

  • Arami H, Mohajerani MS, Mazloumi M, et al. (2009). Rapid formation of hydroxyapatite nanostrips via microwave irradiation. J Alloys Compd 469:391–4.
  • Arango-Restrepo A, Barragán D, Rubi J. (2019). Self-assembling outside equilibrium: emergence of structures mediated by dissipation. Phys Chem Chem Phys 21:17475–93.
  • Black M, Trent A, Kostenko Y, et al. (2012). Self‐assembled peptide amphiphile micelles containing a cytotoxic T‐cell epitope promote a protective immune response in vivo. Adv Mater 24:3845–9.
  • Blocher WC, Perry SL. (2017). Complex coacervate‐based materials for biomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9:e1442.
  • Boyle AL, Woolfson DN. (2011). De novo designed peptides for biological applications. Chem Soc Rev 40:4295–306.
  • Braide-Moncoeur O, Tran NT, Long JR. (2016). Peptide-based synthetic pulmonary surfactant for the treatment of respiratory distress disorders. Curr Opin Chem Biol 32:22–8.
  • Branco MC, Sigano DM, Schneider JP. (2011). Materials from peptide assembly: towards the treatment of cancer and transmittable disease. Curr Opin Chem Biol 15:427–34.
  • Cai Y, Ran W, Zhai Y, et al. (2020). Recent progress in supramolecular peptide assemblies as virus mimics for cancer immunotherapy. Biomater Sci 8:1045–57.
  • Cao M, Lu S, Wang N, et al. (2019). Enzyme-triggered morphological transition of peptide nanostructures for tumor-targeted drug delivery and enhanced cancer therapy. ACS Appl Mater Interfaces 11:16357–66.
  • Chang R, Zou Q, Xing R, Yan X. (2019). Peptide‐based supramolecular nanodrugs as a new generation of therapeutic toolboxes against cancer. Adv Ther 2:1900048.
  • Chauhan D, Catley L, Li G, et al. (2005). A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8:407–19.
  • Chauhan VP, Popović Z, Chen O, et al. (2011). Fluorescent nanorods and nanospheres for real‐time in vivo probing of nanoparticle shape‐dependent tumor penetration. Angew Chem 123:11619–22.
  • Chauhan VP, Stylianopoulos T, Martin JD, et al. (2012). Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7:383–8.
  • Chen B, He X-Y, Yi X-Q, et al. (2015). Dual-peptide-functionalized albumin-based nanoparticles with pH-dependent self-assembly behavior for drug delivery. ACS Appl Mater Interfaces 7:15148–53.
  • Chen CL, Rosi NL. (2010). Peptide‐based methods for the preparation of nanostructured inorganic materials. Angew Chem Int Ed Engl 49:1924–42.
  • Cheng K, Ding Y, Zhao Y, et al. (2018). Sequentially responsive therapeutic peptide assembling nanoparticles for dual-targeted cancer immunotherapy. Nano Lett 18:3250–8.
  • Choi HS, Liu W, Liu F, et al. (2010). Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol 5:42–7.
  • Collier JH. (2008). Modular self-assembling biomaterials for directing cellular responses. Soft Matter 4:2310–5.
  • Cui H, Muraoka T, Cheetham AG, et al. (2009). Self-assembly of giant peptide nanobelts. Nano Lett 9:945–51.
  • Cui H, Webber MJ, Stupp SI. (2010). Self‐assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94:1–18.
  • Darvin P, Toor SM, Sasidharan Nair V, et al. (2018). Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50:1–11.
  • Dasgupta A, Das D. (2019). Designer peptide amphiphiles: self-assembly to applications. Langmuir 35:10704–24.
  • Davis ME, Motion JPM, Narmoneva DA, et al. (2005). Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111:442–50.
  • Delaney KT, Fredrickson GH. (2017). Theory of polyelectrolyte complexation—complex coacervates are self-coacervates. J Chem Phys 146:224902.
  • Dieckmann GR, Dalton AB, Johnson PA, et al. (2003). Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J Am Chem Soc 125:1770–7.
  • Doll TA, Dey R, Burkhard P. (2015). Design and optimization of peptide nanoparticles. J Nanobiotechnol 13:1–12.
  • Du C, Qi Y, Zhang Y, et al. (2018). Epidermal growth factor receptor-targeting peptide nanoparticles simultaneously deliver gemcitabine and olaparib to treat pancreatic cancer with breast cancer 2 (BRCA2) mutation. ACS Nano 12:10785–96.
  • Du X, Yin S, Xu L, et al. (2020). Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Carbohydr Polym 229:115484.
  • Ejeromedoghene O, Oderinde O, Adewuyi S. (2021). Advances in polymeric ionic liquids-based smart polymeric materials: emerging fabrication strategies. Phys Sci Rev;
  • Fan T, Yu X, Shen B, Sun L. (2017). Peptide self-assembled nanostructures for drug delivery applications. J Nanomater 2017:1–16.
  • Feng Z, Wang H, Chen X, et al. (2017). Self-assembling ability determines the activity of enzyme-instructed self-assembly for inhibiting cancer cells. J Am Chem Soc 139:15377–84.
  • Feng Z, Wang H, Wang S, et al. (2018). Enzymatic assemblies disrupt the membrane and target endoplasmic reticulum for selective cancer cell death. J Am Chem Soc 140:9566–73.
  • Froimchuk E, Carey ST, Edwards C, et al. (2020). Self-assembly as a molecular strategy to improve immunotherapy. Acc Chem Res 53:2534–45.
  • Gao Y, Yang Z, Kuang Y, et al. (2010). Enzyme‐instructed self‐assembly of peptide derivatives to form nanofibers and hydrogels. Biopolymers 94:19–31.
  • Gide TN, Wilmott JS, Scolyer RA, et al. (2018). Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma. Clin Cancer Res 24:1260–70.
  • Gudlur S, Sukthankar P, Gao J, et al. (2012). Peptide nanovesicles formed by the self-assembly of branched amphiphilic peptides. PLOS One 7:e45374.
  • Habibi N, Kamaly N, Memic A, et al. (2016). Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today 11:41–60.
  • Haines-Butterick L, Rajagopal K, Branco M, et al. (2007). Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc Natl Acad Sci U S A 104:7791–6.
  • Haridas V. (2021). Tailoring of peptide vesicles: a bottom-up chemical approach. Acc Chem Res 54:1934–49.
  • Hendricks MP, Sato K, Palmer LC, et al. (2017). Supramolecular assembly of peptide amphiphiles. Acc Chem Res 50:2440–8.
  • Hiscock JR, Bustone GP, Wilson B, et al. (2016). In situ modification of nanostructure configuration through the manipulation of hydrogen bonded amphiphile self-association. Soft Matter 12:4221–8.
  • Hu K, Geng H, Zhang Q, et al. (2016). An in‐tether chiral center modulates the helicity, cell permeability, and target binding affinity of a peptide. Angew Chem 128:8145–9.
  • Hu K, Wei X, Sun C, et al. (2020). Self-assembly of constrained cyclic peptides controlled by ring size. CCS Chem 2:42–51.
  • Hu K, Jiang Y, Xiong W, et al. (2018). Tuning peptide self-assembly by an in-tether chiral center. Sci Adv 4:eaar5907.
  • Hu K, Yin F, Zhou Z, et al. (2019). Directional assembly of a stapled α-helical peptide. Chem Commun 55:10484–7.
  • Hu Y, Lin R, Zhang P, et al. (2016). Electrostatic-driven lamination and untwisting of β-sheet assemblies. ACS Nano 10:880–8.
  • Huang Z-H, Shi L, Ma J-W, et al. (2012). A totally synthetic, self-assembling, adjuvant-free MUC1 glycopeptide vaccine for cancer therapy. J Am Chem Soc 134:8730–3.
  • Jacobs J, Pavlović D, Prydderch H, et al. (2019). Polypeptide nanoparticles obtained from emulsion polymerization of amino acid N-carboxyanhydrides. J Am Chem Soc 141:12522–6.
  • Jeong W-j, Lim Y-b. (2014). Macrocyclic peptides self-assemble into robust vesicles with molecular recognition capabilities. Bioconjug Chem 25:1996–2003.
  • Ji T, Ding Y, Zhao Y, et al. (2015). Peptide assembly integration of fibroblast‐targeting and cell‐penetration features for enhanced antitumor drug delivery. Adv Mater 27:1865–73.
  • Jiang T, Xu C, Liu Y, et al. (2014). Structurally defined nanoscale sheets from self-assembly of collagen-mimetic peptides. J Am Chem Soc 136:4300–8.
  • Jiang Y, Zhang W, Yang F, et al. (2021). Molecular design of stapled pentapeptides as building blocks of self-assembled coiled coil-like fibers. Sci Adv 7:eabd0492.
  • Jiang Y, Pang X, Liu R, et al. (2018). Design of an amphiphilic iRGD peptide and self-assembling nanovesicles for improving tumor accumulation and penetration and the photodynamic efficacy of the photosensitizer. ACS Appl Mater Interfaces 10:31674–85.
  • Joralemon MJ, McRae S, Emrick T. (2010). PEGylated polymers for medicine: from conjugation to self-assembled systems. Chem Commun 46:1377–93.
  • Kaminker I, Wei W, Schrader AM, et al. (2017). Simple peptide coacervates adapted for rapid pressure-sensitive wet adhesion. Soft Matter 13:9122–31.
  • Kim SK, Park H, Lee JM, et al. (2018). pH‐responsive starch microparticles for a tumor‐targeting implant. Polym Adv Technol 29:1372–6.
  • Kopeček J, Yang J. (2012). Smart self‐assembled hybrid hydrogel biomaterials. Angew Chem Int Ed Engl 51:7396–417.
  • Kuang J, Song W, Yin J, et al. (2018). iRGD modified chemo‐immunotherapeutic nanoparticles for enhanced immunotherapy against glioblastoma. Adv Funct Mater 28:1800025.
  • Lamm MS, Rajagopal K, Schneider JP, et al. (2005). Laminated morphology of nontwisting β-sheet fibrils constructed via peptide self-assembly. J Am Chem Soc 127:16692–700.
  • Lee H, Park H, Noh GJ, et al. (2018). pH-responsive hyaluronate-anchored extracellular vesicles to promote tumor-targeted drug delivery. Carbohydr Polym 202:323–33.
  • Lee J, Choe IR, Kim N-K, et al. (2016). Water-floating giant nanosheets from helical peptide pentamers. ACS Nano 10:8263–70.
  • Lee S, Trinh THT, Yoo M, et al. (2019). Self-assembling peptides and their application in the treatment of diseases. Int J Mol Sci 20:5850.
  • Lehn J-M. (2002). Toward self-organization and complex matter. Science 295:2400–3.
  • Levin A, Hakala T, Schnaider L, et al. (2020). Biomimetic peptide self-assembly for functional materials. Nat Rev Chem 4:615–34.
  • Li J, Wang A, Zhao L, et al. (2018b). Self-assembly of monomeric hydrophobic photosensitizers with short peptides forming photodynamic nanoparticles with real-time tracking property and without the need of release in vivo. ACS Appl Mater Interfaces 10:28420–7.
  • Li LL, Qiao Z-Y, Wang L, Wang H. (2019a). Programmable construction of peptide‐based materials in living subjects: from modular design and morphological control to theranostics. Adv Mater 31:1804971.
  • Li M, Zhao X, Dai J, Yu Z. (2019b). Peptide therapeutics and assemblies for cancer immunotherapy. Sci China Mater 62:1759–81.
  • Li S, Zou Q, Li Y, et al. (2018c). Smart peptide-based supramolecular photodynamic metallo-nanodrugs designed by multicomponent coordination self-assembly. J Am Chem Soc 140:10794–802.
  • Li X, Wang Y, Zhang Y, et al. (2021). A supramolecular “trident” for cancer immunotherapy. Adv Funct Mater 31:2100729.
  • Li X-X, Chen J, Shen J-M, et al. (2018a). pH-sensitive nanoparticles as smart carriers for selective intracellular drug delivery to tumor. Int J Pharm 545:274–85.
  • Liang C, Zhang X, Yang M, et al. (2020). Remodeling tumor microenvironment by multifunctional nanoassemblies for enhanced photodynamic cancer therapy. ACS Mater Lett 2:1268–86.
  • Lim Y-b, Moon K-S, Lee M. (2009a). Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks. Chem Soc Rev 38:925–34.
  • Lim Yb, Moon KS, Lee M. (2009b). Stabilization of an α helix by β‐sheet‐mediated self‐assembly of a macrocyclic peptide. Angew Chem 121:1629–33.
  • Liu J, Wang D, Zheng Q, et al. (2008). Atomic structure of a short α-helix stabilized by a main chain hydrogen-bond surrogate. J Am Chem Soc 130:4334–7.
  • Liu S, Kiick KL. (2008). Architecture effects on the binding of cholera toxin by helical glycopolypeptides. Macromolecules 41:764–72.
  • Lo Conte L, Ailey B, Hubbard TJ, et al. (2000). SCOP: a Structural Classification of Proteins database. Nucleic Acids Res 28:257–9.
  • Lombardi L, Falanga A, Del Genio V, Galdiero S. (2019). A new hope: self-assembling peptides with antimicrobial activity. Pharmaceutics 11:166.
  • Lu H, Wang J, Wang T, et al. (2016). Recent progress on nanostructures for drug delivery applications. J Nanomater 2016:1–12.
  • Mandal D, Tiwari RK, Shirazi AN, et al. (2013). Self-assembled surfactant cyclic peptide nanostructures as stabilizing agents. Soft Matter 9:9465–75.
  • Marqusee S, Baldwin RL. (1987). Helix stabilization by Glu-… Lys + salt bridges in short peptides of de novo design. Proc Natl Acad Sci U S A 84:8898–902.
  • Matson JB, Zha RH, Stupp SI. (2011). Peptide self-assembly for crafting functional biological materials. Curr Opin Solid State Mater Sci 15:225–35.
  • Matsuurua K. (2014). Rational design of self-assembled proteins and peptides for nano-and micro-sized architectures. RSC Adv 4:2942–53.
  • Meco E, Lampe KJ. (2019). Impact of elastin-like protein temperature transition on PEG-ELP hybrid hydrogel properties. Biomacromolecules 20:1914–25.
  • Meng Q, Kou Y, Ma X, et al. (2014). Nanostructures from the self‐assembly of α‐helical peptide amphiphiles. J Pept Sci 20:223–8.
  • Min H, Wang J, Qi Y, et al. (2019). Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Adv Mater 31:1808200.
  • Missirlis D, Chworos A, Fu CJ, et al. (2011). Effect of the peptide secondary structure on the peptide amphiphile supramolecular structure and interactions. Langmuir 27:6163–70.
  • Missirlis D, Farine M, Kastantin M, et al. (2010). Linker chemistry determines secondary structure of p5314-29 in peptide amphiphile micelles. Bioconjug Chem 21:465–75.
  • Moyer TJ, Finbloom JA, Chen F, et al. (2014). pH and amphiphilic structure direct supramolecular behavior in biofunctional assemblies. J Am Chem Soc 136:14746–52.
  • Mumcuoglu D, Sardan M, Tekinay T, et al. (2015). Oligonucleotide delivery with cell surface binding and cell penetrating peptide amphiphile nanospheres. Mol Pharm 12:1584–91.
  • Narayanaswamy R, Torchilin VP. (2019). Hydrogels and their applications in targeted drug delivery. Molecules 24:603.
  • Panigrahi B, Singh RK, Suryakant U, et al. (2022). Cyclic peptides nanospheres: a ‘2-in-1’self-assembled delivery system for targeting nucleus and cytoplasm. Eur J Pharm Sci 171:106125.
  • Pashuck ET. (2018). Synthesis of self-assembling peptide-based hydrogels for regenerative medicine using solid-phase peptide synthesis. Methods Mol Biol 1758:177–92.
  • Peng J, Yang Q, Xiao Y, et al. (2019). Tumor microenvironment responsive drug–dye–peptide nanoassembly for enhanced tumor‐targeting, penetration, and photo‐chemo‐immunotherapy. Adv Funct Mater 29:1900004.
  • Perczel A, Gáspári Z, Csizmadia IG. (2005). Structure and stability of β‐pleated sheets. J Comput Chem 26:1155–68.
  • Puffer EB, Pontrello JK, Hollenbeck JJ, et al. (2007). Activating B cell signaling with defined multivalent ligands. ACS Chem Biol 2:252–62.
  • Qin H, Ding Y, Mujeeb A, et al. (2017). Tumor microenvironment targeting and responsive peptide-based nanoformulations for improved tumor therapy. Mol Pharmacol 92:219–31.
  • Rad-Malekshahi M, Lempsink L, Amidi M, et al. (2016). Biomedical applications of self-assembling peptides. Bioconjug Chem 27:3–18.
  • Raza F, Zafar H, You X, et al. (2019). Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers. J Mater Chem B 7:7639–55.
  • Reches M, Gazit E. (2004). Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett 4:581–5.
  • Rehman K, Ali I, El-Haj B, et al. (2021). Synthesis of novel biocompatible resorcinarene based nanosized dendrimer-vesicles for enhanced anti-bacterial potential of quercetin. J Mol Liq 341:116921.
  • Ren X, Zou Q, Yuan C, et al. (2019). The dominant role of oxygen in modulating the chemical evolution pathways of tyrosine in peptides: dityrosine or melanin. Angew Chem 131:5930–4.
  • Rinaldi S. (2020). The diverse world of foldamers: endless possibilities of self-assembly. Molecules 25:3276.
  • Ruan F, Chen Y, Hopkins PB. (1990). Metal ion-enhanced helicity in synthetic peptides containing unnatural, metal-ligating residues. J Am Chem Soc 112:9403–4.
  • Rubert Pérez CM, Stephanopoulos N, Sur S, et al. (2015). The powerful functions of peptide-based bioactive matrices for regenerative medicine. Ann Biomed Eng 43:501–14.
  • Rudra JS, Sun T, Bird KC, et al. (2012). Modulating adaptive immune responses to peptide self-assemblies. ACS Nano 6:1557–64.
  • Schneider JP, Pochan DJ, Ozbas B, et al. (2002). Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124:15030–7.
  • Shimada T, Megley K, Tirrell M, Hotta A. (2011). Fluid mechanical shear induces structural transitions in assembly of a peptide–lipid conjugate. Soft Matter 7:8856–61.
  • Shimada T, Sakamoto N, Motokawa R, et al. (2012). Self-assembly process of peptide amphiphile worm-like micelles. J Phys Chem B 116:240–3.
  • Shmidov Y, Zhou M, Yosefi G, et al. (2019). Hydrogels composed of hyaluronic acid and dendritic ELPs: hierarchical structure and physical properties. Soft Matter 15:917–25.
  • Sindhwani S, Syed AM, Ngai J, et al. (2020). The entry of nanoparticles into solid tumours. Nat Mater 19:566–75.
  • Sing CE, Perry SL. (2020). Recent progress in the science of complex coacervation. Soft Matter 16:2885–914.
  • Singh P, Manhas P, Sharma R, et al. (2020). Self-assembled dipeptide nanospheres as single component based delivery vehicle for ampicillin and doxorubicin. J Mol Liq 312:113420.
  • Standley SM, Toft DJ, Cheng H, et al. (2010). Induction of cancer cell death by self-assembling nanostructures incorporating a cytotoxic peptide. Cancer Res 70:3020–6.
  • Su L, Wu Q, Tan L, et al. (2019). High biocompatible ZIF-8 coated by ZrO2 for chemo-microwave thermal tumor synergistic therapy. ACS Appl Mater Interfaces 11:10520–31.
  • Sun L, Fan Z, Wang Y, et al. (2015). Tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles. Soft Matter 11:3822–32.
  • Tan W, Zhang Q, Wang J, et al. (2021). Enzymatic assemblies of thiophosphopeptides instantly target Golgi apparatus and selectively kill cancer cells. Angew Chem 60:12796–801.
  • Tesauro D, Accardo A, Diaferia C, et al. (2019). Peptide-based drug-delivery systems in biotechnological applications: recent advances and perspectives. Molecules 24:351.
  • Tian Y, Zhang L, Liu F, et al. (2021). Multi-stage responsive peptide nanosensor: anchoring EMT and mitochondria with enhanced fluorescence and boosting tumor apoptosis. Biosens Bioelectron 184:113235.
  • Toft DJ, Moyer TJ, Standley SM, et al. (2012). Coassembled cytotoxic and pegylated peptide amphiphiles form filamentous nanostructures with potent antitumor activity in models of breast cancer. ACS Nano 6:7956–65.
  • Ulijn RV, Smith AM. (2008). Designing peptide based nanomaterials. Chem Soc Rev 37:664–75.
  • Uversky VN. (2019). Intrinsically disordered proteins and their “mysterious” (meta)physics. Front Phys 7:1–18.
  • Veerman C, Rajagopal K, Palla CS, et al. (2006). Gelation kinetics of β-hairpin peptide hydrogel networks. Macromolecules 39:6608–14.
  • Vincent TL, Woolfson DN, Adams JC. (2013). Prediction and analysis of higher-order coiled-coils: insights from proteins of the extracellular matrix, tenascins and thrombospondins. Int J Biochem Cell Biol 45:2392–401.
  • Wang J, Liu K, Xing R, et al. (2016). Peptide self-assembly: thermodynamics and kinetics. Chem Soc Rev 45:5589–604.
  • Wang R, Li X, Yoon J. (2021a). Organelle-targeted photosensitizers for precision photodynamic therapy. ACS Appl Mater Interfaces 13:19543–71.
  • Wang Y, Zhang X, Wan K, et al. (2021b). Supramolecular peptide nano-assemblies for cancer diagnosis and therapy: from molecular design to material synthesis and function-specific applications. J Nanobiotechnol 19:1–31.
  • Wang Y, Gong X. (2017). Special oleophobic and hydrophilic surfaces: approaches, mechanisms, and applications. J Mater Chem A 5:3759–73.
  • Wang Y, Zhang W, Gong C, et al. (2020). Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. Soft Matter 16:10029–45.
  • Wang Z, An H-W, Hou D, et al. (2019). Addressable peptide self‐assembly on the cancer cell membrane for sensitizing chemotherapy of renal cell carcinoma. Adv Mater 31:1807175.
  • Webber MJ, Tongers J, Renault M-A, et al. (2010). Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater 6:3–11.
  • Whitesides GM, Mathias JP, Seto CT. (1991). Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–9.
  • Wilhelm J, Vytášek R, Uhlík J, et al. (2016). Oxidative stress in the developing rat brain due to production of reactive oxygen and nitrogen species. Oxid Med Cell Longevity 2016:5057610.
  • Wong XY, Sena-Torralba A, Álvarez-Diduk R, et al. (2020). Nanomaterials for nanotheranostics: tuning their properties according to disease needs. ACS Nano 14:2585–627.
  • Xiong S, Wang Z, Liu J, et al. (2019). A pH-sensitive prodrug strategy to co-deliver DOX and TOS in TPGS nanomicelles for tumor therapy. Colloids Surf B Biointerfaces 173:346–55.
  • Xu F, Liu J, Tian J, et al. (2016). Supramolecular self-assemblies with nanoscale RGD clusters promote cell growth and intracellular drug delivery. ACS Appl Mater Interfaces 8:29906–14.
  • Xue Y, He L, Middelberg APJ, et al. (2014). Determining the structure of interfacial peptide films: comparing neutron reflectometry and molecular dynamics simulations. Langmuir 30:10080–9.
  • Yamamoto S, Nishimura K, Morita K, et al. (2021). Microenvironment pH-induced selective cell death for potential cancer therapy using nanofibrous self-assembly of a peptide amphiphile. Biomacromolecules 22:2524–31.
  • Yang G, Huang T, Wang Y, et al. (2018). Sustained release of antimicrobial peptide from self-assembling hydrogel enhanced osteogenesis. J Biomater Sci Polym Ed 29:1812–24.
  • Yang L, Peltier R, Zhang M, et al. (2020a). Desuccinylation-triggered peptide self-assembly: live cell imaging of SIRT5 activity and mitochondrial activity modulation. J Am Chem Soc 142:18150–9.
  • Yang W, Zhou Z, Lau J, et al. (2019). Functional T cell activation by smart nanosystems for effective cancer immunotherapy. Nano Today 27:28–47.
  • Yang Z, Xu H, Zhao X. (2020b). Designer self‐assembling peptide hydrogels to engineer 3D cell microenvironments for cell constructs formation and precise oncology remodeling in ovarian cancer. Adv Sci 7:1903718.
  • Yin Q, Tang L, Cai K, et al. (2018). Albumin as a “Trojan Horse” for polymeric nanoconjugate transendothelial transport across tumor vasculatures for improved cancer targeting. Biomater Sci 6:1189–200.
  • Yokoi H, Kinoshita T, Zhang S. (2005). Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci U S A 102:8414–9.
  • Yuan C, Ji W, Xing R, et al. (2019). Hierarchically oriented organization in supramolecular peptide crystals. Nat Rev Chem 3:567–88.
  • Zhang J, Zhang D, Li Q, et al. (2019a). Task-specific design of immune-augmented nanoplatform to enable high-efficiency tumor immunotherapy. ACS Appl Mater Interfaces 11:42904–16.
  • Zhang L, Huang Y, Lindstrom AR, et al. (2019b). Peptide-based materials for cancer immunotherapy. Theranostics 9:7807–25.
  • Zhang S, Lockshin C, Cook R, Rich A. (1994). Unusually stable β‐sheet formation in an ionic self‐complementary oligopeptide. Biopolymers 34:663–72.
  • Zhang S, Holmes TC, DiPersio CM, et al. (1995). Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16:1385–93.
  • Zhang S. (2003). Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–8.
  • Zhang S, Holmes T, Lockshin C, Rich A. (1993). Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90:3334–8.
  • Zhao L, Zou Q, Yan X. (2019). Self-assembling peptide-based nanoarchitectonics. Bull Chem Soc Jpn 92:70–9.
  • Zhao Y, Yang W, Chen C, et al. (2018). Rational design and self-assembly of short amphiphilic peptides and applications. Curr Opin Colloid Interface Sci 35:112–23.
  • Zhu H, Wang H, Shi B, et al. (2019). Supramolecular peptide constructed by molecular Lego allowing programmable self-assembly for photodynamic therapy. Nat Commun 10:1–10.
  • Zhu P, Yan X, Su Y, et al. (2010). Solvent‐induced structural transition of self‐assembled dipeptide: from organogels to microcrystals. Chem Eur J 16:3176–83.