2,654
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Emerging strategies in nanotechnology to treat respiratory tract infections: realizing current trends for future clinical perspectives

, , &
Pages 2442-2458 | Received 03 Apr 2022, Accepted 06 Jun 2022, Published online: 27 Jul 2022

References

  • Aderibigbe BA, Naki T. (2018). Design and efficacy of nanogels formulations for intranasal administration. Molecules 23:1241.
  • Adouni Lawani M, Zongo F, Breton MC, et al. (2018). Factors associated with adherence to asthma treatment with inhaled corticosteroids: a cross-sectional exploratory study. J Asthma 55:318–29.
  • Ahangarpour A, Oroojan AA, Khorsandi L, et al. (2018). Solid Lipid nanoparticles of myricitrin have antioxidant and antidiabetic effects on streptozotocin-nicotinamide-induced diabetic model and myotube cell of male mouse. Oxid Med Cell Longev 2018:7496936.
  • Ahmad J, Akhter S, Rizwanullah M, et al. (2015). Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl 8:55–66.
  • Ahmed R, Aucamp M, Ebrahim N, Samsodien H. (2021). Supramolecular assembly of rifampicin and PEGylated PAMAM dendrimer as a novel conjugate for tuberculosis. J Drug Delivery Sci Technol 66:102773.
  • Al-Nemrawi NK, Alshraiedeh NH, Zayed AL, Altaani BM. (2018). Low molecular weight chitosan-coated PLGA nanoparticles for pulmonary delivery of tobramycin for cystic fibrosis. Pharmaceuticals 11:28.
  • Al-Tubaikh JA. (2010). Alveolar lung diseases. Internal Med 113:113–118. https://doi.org/10.1007/978-3-642-03709-2_19
  • Alhariri M, Omri A. (2013). Efficacy of liposomal bismuth-ethanedithiol-loaded tobramycin after intratracheal administration in rats with pulmonary Pseudomonas aeruginosa infection. Antimicrob Agents Chemother 57:569–78. https://doi.org/10.1128/AAC.01634-12/ASSET/AE4AB036-23BF-4C0C-B64E-23D180FF5BC6/ASSETS/GRAPHIC/ZAC0021315380009.JPEG
  • Allemailem KS, Alnuqaydan AM, Almatroudi A, et al. (2021). Safety and therapeutic efficacy of thymoquinone-loaded liposomes against drug-sensitive and drug-resistant Acinetobacter baumannii. Pharmaceutics 13:677.
  • Alsamhary K, Al-Enazi N, Alshehri WA, Ameen F. (2020). Gold nanoparticles synthesised by flavonoid tricetin as a potential antibacterial nanomedicine to treat respiratory infections causing opportunistic bacterial pathogens. Microb Pathog 139:103928.
  • Ameen F, AlYahya SA, Bakhrebah MA, et al. (2018). Flavonoid dihydromyricetin-mediated silver nanoparticles as potential nanomedicine for biomedical treatment of infections caused by opportunistic fungal pathogens. Res Chem Intermed 44:5063–73. https://doi.org/10.1007/S11164-018-3409-X/FIGURES/6
  • Aremu OS, Qwebani-Ogunleye T, Katata-Seru L, et al. (2021). Synergistic broad-spectrum antibacterial activity of Hypoxis hemerocallidea-derived silver nanoparticles and streptomycin against respiratory pathobionts. Sci Rep 11:1–11.
  • Attallah NGM, Elekhnawy E, Negm WA, et al. (2022). In vivo and in vitro antimicrobial activity of biogenic silver nanoparticles against Staphylococcus aureus clinical isolates. Pharmaceuticals 15:194.
  • Banoub NG, Saleh SE, Helal HS, Aboshanab KM. (2021). Antibiotics combinations and chitosan nanoparticles for combating multidrug resistance Acinetobacter baumannii. Infect Drug Resist 14:3327–39. https://doi.org/10.2147/IDR.S328788
  • Baranyai Z, Soria-Carrera H, Alleva M, et al. (2021). Nanotechnology-based targeted drug delivery: an emerging tool to overcome tuberculosis. Adv Therap 4:2000113.
  • Barenholz Y. (2012). Doxil®-the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–34.
  • Beck-Broichsitter M, Ruppert C, Schmehl T, et al. (2011). Biophysical investigation of pulmonary surfactant surface properties upon contact with polymeric nanoparticles in vitro. Nanomedicine 7:341–50.
  • Bellini RG, Guimarães AP, Pacheco MAC, et al. (2015). Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Model 60:34–42.
  • Bi R, Shao W, Wang Q, Zhang N. (2009). Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery. J Biomed Nanotechnol 5:84–92.
  • Blasi F, Page C, Rossolini GM, et al. (2016). The effect of N-acetylcysteine on biofilms: implications for the treatment of respiratory tract infections. Respir Med 117:190–7.
  • Bohr A, Tsapis N, Foged C, et al. (2020). Treatment of acute lung inflammation by pulmonary delivery of anti-TNF-α siRNA with PAMAM dendrimers in a murine model. Eur J Pharm Biopharm 156:114–20.
  • Boswell GW, Buell D, Bekersky I. (1998). AmBisome (Liposomal Amphotericin B): a comparative review. J Clin Pharmacol 38:583–92.
  • Bruna T, Maldonado-Bravo F, Jara P, Caro N. (2021). Silver nanoparticles and their antibacterial applications. IJMS 22:7202.
  • Bulbake U, Doppalapudi S, Kommineni N, Khan W. (2017). Liposomal formulations in clinical use: an updated review. Pharmaceutics 9:12.
  • Castellani S, Trapani A, Spagnoletta A, et al. (2018). Nanoparticle delivery of grape seed-derived proanthocyanidins to airway epithelial cells dampens oxidative stress and inflammation. J Transl Med 16:1–15. https://doi.org/10.1186/S12967-018-1509-4/FIGURES/6
  • Chai G, Park H, Yu S, et al. (2019). Evaluation of co-delivery of colistin and ciprofloxacin in liposomes using an in vitro human lung epithelial cell model. Int J Pharm 569:118616.
  • Cheng W-C, Chen C-H. (2019). Nanotechnology bring a new hope for asthmatics. Ann Transl Med 7:516.
  • Chuan J, Li Y, Yang L, et al. (2013). Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles. J Nanopart Res 15:1–9. https://doi.org/10.1007/S11051-013-1634-1/FIGURES/5
  • Cipolla D, Shekunov B, Blanchard J, Hickey A. (2014). Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv Drug Deliv Rev 75:53–80.
  • Craparo EF, Porsio B, Sardo C, et al. (2016). Pegylated polyaspartamide-polylactide-based nanoparticles penetrating cystic fibrosis artificial mucus. Biomacromolecules 17:767–777. https://doi.org/10.1021/ACS.BIOMAC.5B01480/SUPPL_FILE/BM5B01480_SI_001.PDF
  • Da Silva PB, De Freitas ES, Bernegossi J, et al. (2016). Nanotechnology-based drug delivery systems for treatment of tuberculosis-a review. J Biomed Nanotechnol 12:241–260.
  • Darveaux JI, Lemanske RF. (2014). Infection-related asthma. J Allergy Clin Immunol Pract 2:658–663.
  • Das J, Das S, Paul A, et al. (2014). Assessment of drug delivery and anticancer potentials of nanoparticles-loaded siRNA targeting STAT3 in lung cancer, in vitro and in vivo. Toxicol Lett 225:454–466.
  • De Boeck K. (2020). Cystic fibrosis in the year 2020: a disease with a new face. Acta Paediatr 109:893–899.
  • de Menezes BRC, Rodrigues KF, Schatkoski VM, et al. (2021). Current advances in drug delivery of nanoparticles for respiratory disease treatment. J Mater Chem B 9:1745–1761.
  • Deoghare S. (2013). Bedaquiline: a new drug approved for treatment of multidrug-resistant tuberculosis. Indian J Pharmacol 45:536–537.
  • Derbali RM, Aoun V, Moussa G, et al. (2019). Tailored nanocarriers for the pulmonary delivery of levofloxacin against pseudomonas aeruginosa: a comparative study. Mol Pharm 16:1906–1916. https://doi.org/10.1021/ACS.MOLPHARMACEUT.8B01256/SUPPL_FILE/MP8B01256_SI_001.PDF
  • Dykman L, Khlebtsov N. (2012). Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41:2256–2282.
  • El-Sherbiny IM, Villanueva DG, Herrera D, Smyth HDC. (2011). Overcoming lung clearance mechanisms for controlled release drug delivery. Control Pulmon Drug Delivery 101–126. https://doi.org/10.1007/978-1-4419-9745-6_5
  • Falciani C, Zevolini F, Brunetti J, et al. (2020). Antimicrobial peptide-loaded nanoparticles as inhalation therapy for Pseudomonas aeruginosa infections. Int J Nanomed 15:1117–1128.
  • Feng G, Jiang Q, Xia M, et al. (2013). Enhanced immune response and protective effects of nano-chitosan-based dna vaccine encoding T cell epitopes of Esat-6 and FL against mycobacterium tuberculosis infection. PLoS ONE 8:e61135.
  • Filipczak N, Yalamarty SSK, Li X, et al. (2021). Developments in treatment methodologies using dendrimers for infectious diseases. Molecules 26:3304.
  • Flemming HC, Wingender J. (2010). The biofilm matrix. Nat Rev Microbiol 8:623–633.
  • Forier K, Messiaen AS, Raemdonck K, et al. (2013). Transport of nanoparticles in cystic fibrosis sputum and bacterial biofilms by single-particle tracking microscopy. Nanomedicine (Lond) 8:935–949.
  • Fu L, Zhao J, Huang J, et al. (2022). A mitochondrial STAT3-methionine metabolism axis promotes ILC2-driven allergic lung inflammation. J Allergy Clin Immunol 149:2091–2104.
  • Fukuyama Y, Yuki Y, Katakai Y, et al. (2015). Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques. Mucosal Immunol 8:1144–1153.
  • Garcia-Contreras L, Wong YL, Muttil P, et al. (2008). Immunization by a bacterial aerosol. Proc Natl Acad Sci U S A 105:4656–4660. https://doi.org/10.1073/PNAS.0800043105/SUPPL_FILE/00043SUPPAPPENDIX.PDF
  • Ghodake V, Vishwakarma J, Vavilala SL, Patravale V. (2020). Cefoperazone sodium liposomal formulation to mitigate P. aeruginosa biofilm in Cystic fibrosis infection: a QbD approach. Int J Pharm 587:119696
  • Ginsberg AM, Spigelman M. (2007). Challenges in tuberculosis drug research and development. Nat Med 13:290–294.
  • Gnanadhas DP, Elango M, Datey A, Chakravortty D. (2015). Chronic lung infection by Pseudomonas aeruginosa biofilm is cured by L-methionine in combination with antibiotic therapy. Sci Rep 5:16043–14.
  • Gordon SB, Read RC. (2002). Macrophage defences against respiratory tract infections the immunology of childhood respiratory infections. Br Med Bull 61:45–61.
  • Guitor AK, Wright GD. (2018). Antimicrobial resistance and respiratory infections. Chest 154:1202–1212.
  • Günday Türeli N, Torge A, Juntke J, et al. (2017). Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur J Pharm Biopharm 117:363–371.
  • Gupta PV, Nirwane AM, Nagarsenker MS. (2018). Inhalable levofloxacin liposomes complemented with lysozyme for treatment of pulmonary infection in rats: effective antimicrobial and antibiofilm strategy. AAPS PharmSciTech 19:1454–1467. https://doi.org/10.1208/S12249-017-0945-4/FIGURES/13
  • Gyu Kong I, Sato A, Yuki Y, et al. (2013). Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. Infect Immun 81:1625–1634.
  • Hamzah Y, Bin Hashim S, Rahman WAWA. (2017). Synthesis of polymeric nano/microgels: a review. J Polym Res 24:1–19.
  • Hasanzadeh M, Feyziazar M, Solhi E, et al. (2019). Ultrasensitive immunoassay of breast cancer type 1 susceptibility protein (BRCA1) using poly (dopamine-beta cyclodextrine-Cetyl trimethylammonium bromide) doped with silver nanoparticles: a new platform in early stage diagnosis of breast cancer and efficient management. Microchem J 145:778–783.
  • Hawn TR, Day TA, Scriba TJ, et al. (2014). Tuberculosis vaccines and prevention of infection. Microbiol Mol Biol Rev 78:650–671. https://doi.org/10.1128/MMBR.00021-14/ASSET/0B1E08E5-B499-450E-AE31-CFE7575C5171/ASSETS/GRAPHIC/ZMR9990923760002.JPEG
  • Hema S, Thambiraj S, Shankaran DR. (2018). Nanoformulations for targeted drug delivery to prostate cancer: an overview. J Nanosci Nanotechnol 18:5171–5191.
  • Hill M, Twigg M, Sheridan EA, et al. (2019). Alginate/chitosan particle-based drug delivery systems for pulmonary applications. Pharmaceutics 11:379.
  • Homayoonnia S, Lee Y, Andalib D, et al. (2021). Micro/nanotechnology-inspired rapid diagnosis of respiratory infectious diseases. Biomed Eng Lett 11:335–365.
  • Horváti K, Gyulai G, Csámpai A, et al. (2018). Surface layer modification of poly(d, l-lactic-co-glycolic acid) nanoparticles with targeting peptide: a convenient synthetic route for pluronic F127-tuftsin conjugate. Bioconjug Chem 29:1495–1499. https://doi.org/10.1021/ACS.BIOCONJCHEM.8B00156/SUPPL_FILE/BC8B00156_SI_001.PDF
  • Huang D, Wu D. (2018). Biodegradable dendrimers for drug delivery. Mater Sci Eng C Mater Biol Appl 90:713–727.
  • Huang Z, Kłodzińska SN, Wan F, Nielsen HM. (2021). Nanoparticle-mediated pulmonary drug delivery: state of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections. Drug Deliv Transl Res 11:1634–1654.
  • Idris AO, Mamba B, Feleni U. (2020). Poly(propylene imine) dendrimer: a potential nanomaterial for electrochemical application. Mater Chem Phys 244:122641.
  • Ingle AP, Shende S, Pandit R, et al. (2016). Nanotechnological applications for the control of pulmonary infections. Microbiol Respirator Syst Infect 223–235. https://doi.org/10.1016/B978-0-12-804543-5.00015-4
  • Juntke J, Murgia X, Günday Türeli N, et al. (2021). Testing of aerosolized ciprofloxacin nanocarriers on cystic fibrosis airway cells infected with P. aeruginosa biofilms. Drug Deliv and Transl Res 11:1752–1765. https://doi.org/10.1007/S13346-021-01002-8/FIGURES/8
  • Kabanov AV, Vinogradov SV. (2009). Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed Engl 48:5418–5429.
  • Kamaruzzaman NF, Kendall S, Good L. (2017). Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol 174:2225–2236.
  • Kao HW, Lin YY, Chen CC, et al. (2013). Evaluation of EGFR-targeted radioimmuno-gold-nanoparticles as a theranostic agent in a tumor animal model. Bioorg Med Chem Lett 23:3180–3185.
  • Kaufmann SHE, Weiner J, von Reyn CF. (2017). Novel approaches to tuberculosis vaccine development. Int J Infect Dis 56:263–267.
  • Keskin D, Zu G, Forson AM, et al. (2021). Nanogels: a novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 6:3634–3657.
  • Khan F, Lee JW, Manivasagan P, et al. (2019). Synthesis and characterization of chitosan oligosaccharide-capped gold nanoparticles as an effective antibiofilm drug against the Pseudomonas aeruginosa PAO1. Microb Pathog 135:103623
  • Khan F, Manivasagan P, Lee JW, et al. (2019). Fucoidan-stabilized gold nanoparticle-mediated biofilm inhibition, attenuation of virulence and motility properties in Pseudomonas aeruginosa PAO1. Mar Drugs 17:208.
  • Khan O, Chaudary N. (2020). The use of amikacin liposome inhalation suspension (Arikayce) in the treatment of refractory nontuberculous mycobacterial lung disease in adults. Drug Des Devel Ther 14:2287–2294.
  • Khatak S, Mehta M, Awasthi R, et al. (2020). Solid lipid nanoparticles containing anti-tubercular drugs attenuate the Mycobacterium marinum infection. Tuberculosis 125:102008.
  • Kim B, Pang HB, Kang J, et al. (2018). Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus. Nat Commun 9:1–13.
  • Kim J, Mohamed MAA, Zagorovsky K, Chan WCW. (2017). State of diagnosing infectious pathogens using colloidal nanomaterials. Biomaterials 146:97–114.
  • Kim KJ, Sung WS, Suh BK, et al. (2009). Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242. https://doi.org/10.1007/S10534-008-9159-2/FIGURES/5
  • Klinger-Strobel M, Lautenschläger C, Fischer D, et al. (2015). Aspects of pulmonary drug delivery strategies for infections in cystic fibrosis-where do we stand? Expert Opin Drug Deliv 12:1351–1374.
  • Koch C, & Hoiby N. (1993). Pathogenesis of cystic fibrosis. Lancet 341:1065–1069.
  • Kolpen M, Kragh KN, Barraza J, et al. (2022). Bacterial biofilms predominate in both acute and chronic human lung infections. Thorax thoraxjnl-2021-217576. thoraxjnl-2021-217576. https://doi.org/10.1136/THORAXJNL-2021-217576
  • Komalla V, Allam VSRR, Kwok PCL, et al. (2020). A phospholipid-based formulation for the treatment of airway inflammation in chronic respiratory diseases. Eur J Pharm Biopharm 157:47–58.
  • Kooti M, Sedeh AN, Motamedi H, Rezatofighi SE. (2018). Magnetic graphene oxide inlaid with silver nanoparticles as antibacterial and drug delivery composite. Appl Microbiol Biotechnol 102:3607–3621. https://doi.org/10.1007/S00253-018-8880-1/FIGURES/10
  • Kora AJ, Arunachalam J. (2011). Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J Microbiol Biotechnol 27:1209–1216. https://doi.org/10.1007/S11274-010-0569-2/FIGURES/9
  • Kraft M. (2000). The role of bacterial infections in asthma. Clin Chest Med 21:301–313.
  • Kretzmann JA, Ho D, Evans CW, et al. (2017). Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chem Sci 8:2923–2930.
  • Kumar SSD, Houreld NN, Kroukamp EM, Abrahamse H. (2018). Cellular imaging and bactericidal mechanism of green-synthesized silver nanoparticles against human pathogenic bacteria. J Photochem Photobiol B 178:259–269.
  • Lababidi N, Montefusco-Pereira CV, de Souza Carvalho-Wodarz C, et al. (2020). Spray-dried multidrug particles for pulmonary co-delivery of antibiotics with N-acetylcysteine and curcumin-loaded PLGA-nanoparticles. Eur J Pharm Biopharm 157:200–210.
  • Lahiri T, Brambilla L, Andrade J, et al. (2021). Mitochondrial STAT3 regulates antioxidant gene expression through complex I-derived NAD in triple negative breast cancer. Mol Oncol 15:1432–1449. https://doi.org/10.1002/1878-0261.12928
  • Lambe U, Brar B, Guray M, et al. (2016). Nanodiagnostics: a new frontier for veterinary and medical sciences. JEBAS 4:307–320.
  • Lan MY, Hsu Y, Bin Hsu CH, et al. (2013). Induction of apoptosis by high-dose gold nanoparticles in nasopharyngeal carcinoma cells. Auris Nasus Larynx 40:563–568.
  • Li WR, Xie XB, Shi QS, et al. (2011). Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141. https://doi.org/10.1007/S10534-010-9381-6/TABLES/1
  • Li WR, Xie XB, Shi QS, et al. (2010). Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122. https://doi.org/10.1007/S00253-009-2159-5/FIGURES/6
  • Li X, Gui R, Li J, et al. (2021). Novel multifunctional silver nanocomposite serves as a resistance-reversal agent to synergistically combat carbapenem-resistant Acinetobacter baumannii. ACS Appl Mater Interfaces 13:30434–30457. https://doi.org/10.1021/ACSAMI.1C10309/ASSET/IMAGES/LARGE/AM1C10309_0016.JPEG
  • Li XZ, Nikaido H. (2009). Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623. https://doi.org/10.2165/11317030-000000000-00000
  • Li Y, Tang C, Zhang E, Yang L. (2017). Electrostatically entrapped colistin liposomes for the treatment of Pseudomonas aeruginosa infection. Pharm Dev Technol 22:436–444.
  • Lima Salviano T, dos Santos Macedo DC, de Siqueira Ferraz Carvalho R, et al. (2021). Fucoidan-coated liposomes: a target system to deliver the antimicrobial drug usnic acid to macrophages infected with Mycobacterium tuberculosis. J Biomed Nanotechnol 17:1699–1710.
  • López Y, Muñoz L, Gargallo-Viola D, et al. (2021). Uptake of ozenoxacin and other quinolones in gram-positive bacteria. IJMS 22:13363.
  • Ma C, Wu M, Ye W, et al. (2021). Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive properties. Drug Deliv Transl Res 11:1218–1235. https://doi.org/10.1007/S13346-020-00849-7/FIGURES/6
  • Marasini N, Haque S, Kaminskas LM. (2017). Polymer-drug conjugates as inhalable drug delivery systems: a review. Curr Opin Colloid Interf Sci 31:18–29.
  • Maretti E, Costantino L, Buttini F, et al. (2019). Newly synthesized surfactants for surface mannosylation of respirable SLN assemblies to target macrophages in tuberculosis therapy. Drug Deliv Transl Res 9:298–310. https://doi.org/10.1007/S13346-018-00607-W/FIGURES/11
  • Mehta M, Deeksha Tewari D, Gupta G, et al. (2019). Oligonucleotide therapy: an emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem Biol Interact 308:206–215.
  • Menon JU, Ravikumar P, Pise A, et al. (2014). Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomater 10:2643–2652.
  • Messiaen AS, Forier K, Nelis H, et al. (2013). Transport of nanoparticles and tobramycin-loaded liposomes in burkholderia cepacia complex biofilms. PLoS ONE 8:e79220
  • Mignani S, Tripathi VD, Soam D, et al. (2021). Safe polycationic dendrimers as potent oral in vivo inhibitors of mycobacterium tuberculosis: a new therapy to take down tuberculosis. Biomacromolecules 22:2659–2675.
  • Mizgerd JP. (2006). Lung infection-a public health priority. PLoS Med 3:e76
  • Moreau-Marquis S, Stanton BA, O’Toole GA. (2008). Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm Pharmacol Ther 21:595–599.
  • Muhammad W, Zhai Z, Wang S, Gao C. (2022). Inflammation-modulating nanoparticles for pneumonia therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14:e1763. https://doi.org/10.1002/WNAN.1763
  • Mullis AS, Peroutka-Bigus N, Phadke KS, et al. (2021). Nanomedicines to counter microbial barriers and antimicrobial resistance. Curr Opin Chem Eng 31:100672.
  • Nakahashi-Ouchida R, Yuki Y, Kiyono H. (2018). Cationic pullulan nanogel as a safe and effective nasal vaccine delivery system for respiratory infectious diseases. Hum Vaccin Immunother 14:2189–2193.
  • Nakamura K, Matsubara H, Akagi S, et al. (2017). Nanoparticle-mediated drug delivery system for pulmonary arterial hypertension. JCM 6:48.
  • Nasiruddin M, Neyaz MK, Das S. (2017). Nanotechnology-based approach in tuberculosis treatment. Tuberc Res Treat 2017:4920209–12.
  • Nassimi M, Schleh C, Lauenstein HD, et al. (2010). A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung. Eur J Pharm Biopharm 75:107–116.
  • Nassimi M, Schleh C, Lauenstein HD, et al. (2009). Low cytotoxicity of solid lipid nanoparticles in in vitro and ex vivo lung models. Inhalation Toxicol 21:104–109.
  • Ng AW, Bidani A, Heming TA. (2004). Innate host defense of the lung: effects of lung-lining fluid pH. Lung 182:297–317.
  • Ng ZY, Wong JY, Panneerselvam J, et al. (2018). Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf B Biointerfaces 172:51–59.
  • Ngan CL, Asmawi AA. (2018). Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations. Drug Deliv Transl Res 8:1527–1544.
  • Noah NM, Ndangili PM. (2019). Current trends of nanobiosensors for point-of-care diagnostics. J Anal Methods Chem 2019:2179718
  • Ong V, Mei V, Cao L, et al. (2019). Nanomedicine for cystic fibrosis. SLAS Technol 24:169–180.
  • Pandey R, Sharma S, Khuller GK. (2005). Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis (Edinb) 85:415–420.
  • Paranjpe M, Müller-Goymann CC. (2014). Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci 15:5852–5873.
  • Park H, Kim S, Kim S, et al. (2010). Antioxidant and anti-inflammatory activities of hydroxybenzyl alcohol releasing biodegradable polyoxalate nanoparticles. Biomacromolecules 11:2103–2108. https://doi.org/10.1021/BM100474W/ASSET/IMAGES/LARGE/BM-2010-00474W_0009.JPEG
  • Pascual RM, Peters SP. (2005). Airway remodeling contributes to the progressive loss of lung function in asthma: an overview. J Allergy Clin Immunol 116:477–486.
  • Pastor M, Moreno-Sastre M, Esquisabel A, et al. (2014). Sodium colistimethate loaded lipid nanocarriers for the treatment of Pseudomonas aeruginosa infections associated with cystic fibrosis. Int J Pharm 477:485–494.
  • Patel KK, Agrawal AK, Anjum MM, et al. (2020). DNase-I functionalization of ciprofloxacin-loaded chitosan nanoparticles overcomes the biofilm-mediated resistance of Pseudomonas aeruginosa. Appl Nanosci 10:563–575. https://doi.org/10.1007/S13204-019-01129-8/FIGURES/7
  • Pawde DM, Viswanadh MK, Mehata AK, et al. (2020). Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharmaceut J 28:1616–1625.
  • Pignatello R, Leonardi A, Fuochi V, et al. (2018). A Method for efficient loading of ciprofloxacin hydrochloride in cationic solid lipid nanoparticles: formulation and microbiological evaluation. Nanomaterials 8:304.
  • Pinheiro M, Lúcio M, Lima JLFC, Reis S. (2011). Liposomes as drug delivery systems for the treatment of TB. Nanomedicine (Lond) 6:1413–1428.
  • Pompilio A, Geminiani C, Bosco D, et al. (2018). Electrochemically synthesized silver nanoparticles are active against planktonic and biofilm cells of Pseudomonas aeruginosa and other cystic fibrosis-associated bacterial pathogens. Front Microbiol 9:1349. https://doi.org/10.3389/FMICB.2018.01349/BIBTEX
  • Pompilio A, Geminiani C, Mantini P, et al. (2018). Peptide dendrimers as “lead compounds” for the treatment of chronic lung infections by Pseudomonas aeruginosa in cystic fibrosis patients: in vitro and in vivo studies. Infect Drug Resist 11:1767–1782.
  • Poschet J, Perkett E, Deretic V. (2002). Hyperacidification in cystic fibrosis: links with lung disease and new prospects for treatment. Trends Mol Med 8:512–519.
  • Prabhu P, Fernandes T, Chaubey P, et al. (2021). Mannose-conjugated chitosan nanoparticles for delivery of Rifampicin to Osteoarticular tuberculosis. Drug Deliv Transl Res 11:1509–1519. https://doi.org/10.1007/S13346-021-01003-7/TABLES/4
  • Prasad S. (2014). Nanobiosensors: the future for diagnosis of disease? NDD 3:1–10.
  • Rajabnezhad S, Casettari L, Lam JKW, et al. (2016). Pulmonary delivery of rifampicin microspheres using lower generation polyamidoamine dendrimers as a carrier. Powder Technol 291:366–374.
  • Rajkumari J, Busi S, Vasu AC, Reddy P. (2017). Facile green synthesis of baicalein fabricated gold nanoparticles and their antibiofilm activity against Pseudomonas aeruginosa PAO1. Microb Pathog 107:261–269.
  • Rice KM, Ginjupalli GK, Manne NDPK, et al. (2019). A review of the antimicrobial potential of precious metal derived nanoparticle constructs. Nanotechnology 30:372001. https://doi.org/10.1088/1361-6528/AB0D38
  • Robinson E, MacDonald KD, Slaughter K, et al. (2018). Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Mol Ther 26:2034–2046.
  • Rodrigues B, Shende P. (2020). Monodispersed metal-based dendrimeric nanoclusters for potentiation of anti-tuberculosis action. J Mol Liq 304:112731.
  • Roh SG, Robby AI, Phuong PTM, et al. (2019). Photoluminescence-tunable fluorescent carbon dots-deposited silver nanoparticle for detection and killing of bacteria. Mater Sci Eng C Mater Biol Appl 97:613–623.
  • Rudokas M, Najlah M, Alhnan MA, Elhissi A. (2016). Liposome delivery systems for inhalation: a critical review highlighting formulation issues and anticancer applications. Med Princ Pract 25:60–72.
  • Rytting E, Nguyen J, Wang X, Kissel T. (2008). Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv 5:629–639.
  • Sachetelli S, Khalil H, Chen T, et al. (2000). Demonstration of a fusion mechanism between a fluid bactericidal liposomal formulation and bacterial cells. Biochim Biophys Acta BBA Biomembr 1463:254–266.
  • Salieb-Beugelaar GB, Hunziker PR. (2015). Towards nano-diagnostics for bacterial infections. Eur J Nanomed 7:37–50. https://doi.org/10.1515/EJNM-2015-0010/PDF
  • Sanivarapu, R. R., & Gibson, J. (2021). Aspiration pneumonia. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK470459/
  • Sathishkumar P, Vennila K, Jayakumar R, et al. (2016). Phyto-synthesis of silver nanoparticles using Alternanthera tenella leaf extract: an effective inhibitor for the migration of human breast adenocarcinoma (MCF-7) cells. Bioprocess Biosyst Eng 39:651–659. https://doi.org/10.1007/S00449-016-1546-4/FIGURES/5
  • Sharma A, Kumar D, Dahiya K, et al. (2021). Advances in pulmonary drug delivery targeting microbial biofilms in respiratory diseases. Nanomedicine (Lond) 16:1905–1923. https://doi.org/10.2217/NNM-2021-0057/ASSET/IMAGES/LARGE/FIGURE2.JPEG
  • Shi D, Huang J, Chuai Z, et al. (2014). Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor. Biosens Bioelectron 62:280–287.
  • Shima K, Coopmeiners J, Graspeuntner S, et al. (2016). Impact of micro-environmental changes on respiratory tract infections with intracellular bacteria. FEBS Lett 590:3887–3904.
  • Sigurdsson HH, Kirch J, Lehr CM. (2013). Mucus as a barrier to lipophilic drugs. Int J Pharm 453:56–64.
  • Singh H, Jindal S, Singh M, et al. (2015). Nano-formulation of rifampicin with enhanced bioavailability: development, characterization and in-vivo safety. Int J Pharm 485:138–151.
  • Singh L, Kruger HG, Maguire GEM, et al. (2017). The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 4:105–131.
  • Soni KS, Desale SS, Bronich TK. (2016). Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 240:109–126.
  • Sung JC, Pulliam BL, Edwards DA. (2007). Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25:563–570.
  • Tăbăran AF, Matea CT, Mocan T, et al. (2020). Silver Nanoparticles for the Therapy of Tuberculosis. Int J Nanomed 15:2231–2258.
  • Thakur A, Mikkelsen H, Jungersen G. (2019). Intracellular pathogens: host immunity and microbial persistence strategies. J Immunol Res 2019:1356540.
  • Thambiraj S, Shruthi S, Vijayalakshmi R, Ravi Shankaran D. (2019). Evaluation of cytotoxic activity of docetaxel loaded gold nanoparticles for lung cancer drug delivery. Cancer Treat Res Commun 21:100157.
  • Troy NM, Bosco A. (2016). Respiratory viral infections and host responses; insights from genomics. Respir Res 17:1–12.
  • Truzzi E, Nascimento TL, Iannuccelli V, et al. (2020). In vivo biodistribution of respirable solid lipid nanoparticles surface-decorated with a mannose-based surfactant: a promising tool for pulmonary tuberculosis treatment? Nanomaterials 10:568.
  • Tucker AN, Carlson TJ, Sarkar A. (2021). Challenges in drug discovery for intracellular bacteria. Pathogens 10:1172. https://doi.org/10.3390/PATHOGENS10091172/S1
  • Üner M, Yener G. (2007). Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed 2:289. /pmc/articles/PMC2676658/
  • Veldhuizen EJA, Haagsman HP. (2000). Role of pulmonary surfactant components in surface film formation and dynamics. Biochim Biophys Acta BBA Biomembr 1467:255–270.
  • Vieira ACC, Chaves LL, Pinheiro S, et al. (2018). Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int J Pharm 536:478–485.
  • Viswanathan V, Pharande R, Bannalikar A, et al. (2019). Inhalable liposomes of Glycyrrhiza glabra extract for use in tuberculosis: formulation, in vitro characterization, in vivo lung deposition, and in vivo pharmacodynamic studies. Drug Dev Ind Pharm 45:11–20.
  • Wan F, Herzberg M, Huang Z, et al. (2020). A free-floating mucin layer to investigate the effect of the local microenvironment in lungs on mucin-nanoparticle interactions. Acta Biomater 104:115–123.
  • Wan F, S-R Bohr S, Natalie Kłodzin S, et al. (2019). Ultrasmall TPGS − PLGA hybrid nanoparticles for site-specific delivery of antibiotics into Pseudomonas aeruginosa biofilms in lungs. ACS applied materials & interfaces 12(1):380–389. https://doi.org/10.1021/acsami.9b19644
  • Wan G, Ruan L, Yin Y, et al. (2016). Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii. Int J Nanomed 11:3789–3800.
  • Wang L, Feng M, Li Q, et al. (2019). Advances in nanotechnology and asthma. Ann Transl Med 7:180–180.
  • Wang S, Yu S, Lin Y, et al. (2018). Co-delivery of ciprofloxacin and colistin in liposomal formulations with enhanced in vitro antimicrobial activities against multidrug resistant Pseudomonas aeruginosa. Pharm Res 35:1–13.
  • Wang Y, Yu L, Kong X, Sun L. (2017). Application of nanodiagnostics in point-of-care tests for infectious diseases. Int J Nanomed 12:4789–4803.
  • Weber S, Zimmer A, Pardeike J. (2014). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 86:7–22.
  • Winstanley C, O’Brien S, Brockhurst MA. (2016). Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 24:327–337.
  • Yang R, Rincon M. (2016). Mitochondrial Stat3, the need for design thinking. Int J Biol Sci 12:532–544.
  • Yoo D, Guk K, Kim H, et al. (2013). Antioxidant polymeric nanoparticles as novel therapeutics for airway inflammatory diseases. Int J Pharm 450:87–94.
  • Yu T, Chan KWY, Anonuevo A, et al. (2015). Liposome-based mucus-penetrating particles (MPP) for mucosal theranostics: demonstration of diamagnetic chemical exchange saturation transfer (diaCEST) magnetic resonance imaging (MRI). Nanomedicine 11:401–405.
  • Yu X, Zou L, Ling T, et al. (2021). Preparation and evaluation of bergenin-loaded cationic liposome for anti-asthma treatment. Mat Express 11:601–617.
  • Yu Y, Zhang Y, Cheng Y, et al. (2022). NIR-activated nanosystems with self-modulated bacteria targeting for enhanced biofilm eradication and caries prevention. Bioact Mater 13:269–285.
  • Zanin M, Baviskar P, Webster R, Webby R. (2016). The interaction between respiratory pathogens and mucus. Cell Host Microbe 19:159–168.
  • Zhang J, Leifer F, Rose S, et al. (2018). Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front Microbiol 9:915. https://doi.org/10.3389/FMICB.2018.00915/BIBTEX
  • Zhang Y, Shareena Dasari TP, Deng H, Yu H. (2015). Antimicrobial activity of gold nanoparticles and ionic gold. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 33:286–327.
  • Zhao L, Seth A, Wibowo N, et al. (2014). Nanoparticle vaccines. Vaccine 32:327–337.
  • Zhong Q, Bielski ER, Rodrigues LS, et al. (2016). Conjugation to poly(amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol Pharm 13:2363–2375. https://doi.org/10.1021/ACS.MOLPHARMACEUT.6B00126/SUPPL_FILE/MP6B00126_SI_001.PDF
  • Zhou QT, Leung SSY, Tang P, et al. (2015). Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev 85:83–99.