8,965
Views
75
CrossRef citations to date
0
Altmetric
Review

Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: a review

, , , , ORCID Icon &
Pages 2130-2161 | Received 25 Apr 2022, Accepted 20 Jun 2022, Published online: 10 Jul 2022

References

  • Abbasi A, Hajialyani M, Hosseinzadeh L, et al. (2020). Evaluation of the cytotoxic and apoptogenic effects of cinnamaldehyde on U87MG cells alone and in combination with doxorubicin. Res Pharm Sci 15:26–35.
  • Abd Elwakil MM, Mabrouk MT, Helmy MW, et al. (2018). Inhalable lactoferrin-chondroitin nanocomposites for combined delivery of doxorubicin and ellagic acid to lung carcinoma. Nanomedicine (Lond) 13:2015–35.
  • Abedi F, Davaran S, Hekmati M, et al. (2021). An improved method in fabrication of smart dual-responsive nanogels for controlled release of doxorubicin and curcumin in HT-29 colon cancer cells. J Nanobiotechnology 19:18.
  • Ali N, Rashid S, Nafees S, et al. (2014). Beneficial effects of chrysin against Methotrexate-induced hepatotoxicity via attenuation of oxidative stress and apoptosis. Mol Cell Biochem 385:215–23.
  • Amjadi S, Hamishehkar H, Ghorbani M. (2019). A novel smart PEGylated gelatin nanoparticle for co-delivery of doxorubicin and betanin: a strategy for enhancing the therapeutic efficacy of chemotherapy. Mater Sci Eng C Mater Biol Appl 97:833–41.
  • Anbazhagan R, Muthusamy G, Krishnamoorthi R, et al. (2021). PAMAM G4.5 dendrimers for targeted delivery of ferulic acid and paclitaxel to overcome P-glycoprotein-mediated multidrug resistance. Biotechnol Bioeng 118:1213–23.
  • Anwar DM, Khattab SN, Helmy MW, et al. (2018). Lactobionic/folate dual-targeted amphiphilic maltodextrin-based micelles for targeted codelivery of sulfasalazine and resveratrol to hepatocellular carcinoma. Bioconjug Chem 29:3026–41.
  • Arranja AG, Pathak V, Lammers T, et al. (2017). Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res 115:87–95.
  • Baek JS, Cho CW. (2017). A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells. Oncotarget 8:30369–82.
  • Baghbani F, Moztarzadeh F. (2017). Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/curcumin co-deliver alginate nanodroplets. Colloids Surf B Biointerfaces 153:132–40.
  • Bian Y, Guo D. (2020). Targeted therapy for hepatocellular carcinoma: co-delivery of sorafenib and curcumin using lactosylated pH-responsive nanoparticles. Drug Des Devel Ther 14:647–59.
  • Borges GSM, Silva JO, Fernandes RS, et al. (2019). Sclareol is a potent enhancer of doxorubicin: evaluation of the free combination and co-loaded nanostructured lipid carriers against breast cancer. Life Sci 232:116678.
  • Bray F, Ferlay J, Soerjomataram I, et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424.
  • Buhrmann C, Shayan P, Kraehe P, et al. (2015). Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem Pharmacol 98:51–68.
  • Bukowski K, Kciuk M, Kontek R. (2020). Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci 21:3233.
  • Cai FY, Yao XM, Jing M, et al. (2020). Enhanced antitumour efficacy of functionalized doxorubicin plus schisandrin B co-delivery liposomes via inhibiting epithelial-mesenchymal transition. J Liposome Res 31:113–129.
  • Cao C, Wang Q, Liu Y. (2019a). Lung cancer combination therapy: doxorubicin and beta-elemene co-loaded, pH-sensitive nanostructured lipid carriers. Drug Des Devel Ther 13:1087–98.
  • Cao M, Long M, Chen Q, et al. (2019b). Development of beta-elemene and cisplatin co-loaded liposomes for effective lung cancer therapy and evaluation in patient-derived tumor xenografts. Pharm Res 36:121.
  • Cao XF, Meng LH, Liu Z, et al. (2018). Research progress in reversing multidrug resistance of tumor by nanocarrier-mediated combined administration. China Pharmacy 29:716–20.
  • Chavda VP, Patel AB, Mistry KJ, et al. (2022). Nano-drug delivery systems entrapping natural bioactive compounds for cancer: recent progress and future challenges. Front Oncol 12:867655.
  • Chen F, Huang G. (2018). Preparation and immunological activity of polysaccharides and their derivatives. Int J Biol Macromol 112:211–6.
  • Chen F, Zhao Y, Pan Y, et al. (2015). Synergistically enhanced therapeutic effect of a carrier-free HCPT/DOX nanodrug on breast cancer cells through improved cellular drug accumulation. Mol Pharm 12:2237–44.
  • Chen HM, Lai ZQ, Liao HJ, et al. (2018). Synergistic antitumor effect of brusatol combined with cisplatin on colorectal cancer cells. Int J Mol Med 41:1447–54.
  • Chen S, Liang Q, Liu E, et al. (2017). Curcumin/sunitinib co-loaded BSA-stabilized SPIOs for synergistic combination therapy for breast cancer. J Mater Chem B 5:4060–72.
  • Chen S, Song Z, Feng R. (2020a). Recent development of copolymeric nano-drug delivery system for paclitaxel. Anticancer Agents Med Chem 20:2169–89.
  • Chen X, Niu S, Bremner DH, et al. (2020b). Co-delivery of doxorubicin and oleanolic acid by triple-sensitive nanocomposite based on chitosan for effective promoting tumor apoptosis. Carbohydr Polym 247:116672.
  • Chen X, Peng X, Luo Y, et al. (2019). Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3gamma. Toxicol Mech Methods 29:344–54.
  • Chen Y, Zheng XL, Fang DL, et al. (2014). Dual agent loaded PLGA nanoparticles enhanced antitumor activity in a multidrug-resistant breast tumor xenograft model. Int J Mol Sci 15:2761–72.
  • Cheng C, Sui B, Wang M, et al. (2020). Carrier-free nanoassembly of curcumin-erlotinib conjugate for cancer targeted therapy. Adv Healthc Mater 9:e2001128.
  • Cheng T, Liu J, Ren J, et al. (2016). Green tea catechin-based complex micelles combined with doxorubicin to overcome cardiotoxicity and multidrug resistance. Theranostics 6:1277–92.
  • Cheng Y, Zhao P, Wu S, et al. (2018). Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Int J Pharm 545:261–73.
  • Choi JY, Ramasamy T, Kim SY, et al. (2016). PEGylated lipid bilayer-supported mesoporous silica nanoparticle composite for synergistic co-delivery of axitinib and celastrol in multi-targeted cancer therapy. Acta Biomater 39:94–105.
  • Chu PY, Tsai SC, Ko HY, et al. (2019). Co-delivery of natural compounds with a dual-targeted nanoparticle delivery system for improving synergistic therapy in an orthotopic tumor model. ACS Appl Mater Interfaces 11:23880–92.
  • Chung SS, Dutta P, Austin D, et al. (2018). Combination of resveratrol and 5-flurouracil enhanced anti-telomerase activity and apoptosis by inhibiting STAT3 and Akt signaling pathways in human colorectal cancer cells. Oncotarget 9:32943–57.
  • Coelho AR, Martins TR, Couto R, et al. (2017). Berberine-induced cardioprotection and Sirt3 modulation in doxorubicin-treated H9c2 cardiomyoblasts. Biochim Biophys Acta Mol Basis Dis 1863:2904–23.
  • Cosco D, Paolino D, Maiuolo J, et al. (2015). Ultradeformable liposomes as multidrug carrier of resveratrol and 5-fluorouracil for their topical delivery. Int J Pharm 489:1–10.
  • Cui T, Zhang S, Sun H. (2017). Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Oncol Rep 37:1253–60.
  • Cui Y, Zhang M, Zeng F, et al. (2016). Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater Interfaces 8:32159–69.
  • Dai H, Cheng Z, Zhang T, et al. (2022). Boron difluoride formazanate dye for high-efficiency NIR-II fluorescence imaging-guided cancer photothermal therapy. Chin Chem Lett 33:2501–6.
  • Dang YP, Yuan XY, Tian R, et al. (2015). Curcumin improves the paclitaxel-induced apoptosis of HPV-positive human cervical cancer cells via the NF-kappaB-p53-caspase-3 pathway. Exp Ther Med 9:1470–6.
  • Davaran S, Fazeli H, Ghamkhari A, et al. (2018). Synthesis and characterization of novel P(HEMA-LA-MADQUAT) micelles for co-delivery of methotrexate and chrysin in combination cancer chemotherapy. J Biomater Sci Polym Ed 29:1265–86.
  • Deb A, Andrews NG, Raghavan V. (2018). Natural polymer functionalized graphene oxide for co-delivery of anticancer drugs: in-vitro and in-vivo. Int J Biol Macromol 113:515–25.
  • Deng L, Zhu X, Yu Z, et al. (2020). Novel T7-modified pH-responsive targeted nanosystem for co-delivery of docetaxel and curcumin in the treatment of esophageal cancer. Int J Nanomedicine 15:7745–62.
  • Dhanavel S, Nivethaa EAK, Narayanan V, et al. (2017). In vitro cytotoxicity study of dual drug loaded chitosan/palladium nanocomposite towards HT-29 cancer cells. Mater Sci Eng C Mater Biol Appl 75:1399–410.
  • Dong K, Zhao ZZ, Kang J, et al. (2020). Cinnamaldehyde and doxorubicin co-loaded graphene oxide wrapped mesoporous silica nanoparticles for enhanced MCF-7 cell apoptosis. Int J Nanomedicine 15:10285–304.
  • Eftekhari RB, Maghsoudnia N, Samimi S, et al. (2019). Co-delivery nanosystems for cancer treatment: a review. Pharm Nanotechnol 7:90–112.
  • Fan X, Wang T, Ji Z, et al. (2021). Synergistic combination therapy of lung cancer using lipid-layered cisplatin and oridonin co-encapsulated nanoparticles. Biomed Pharmacother 141:111830.
  • Fang J, Zhang S, Xue X, et al. (2018). Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int J Nanomedicine 13:5113–26.
  • Fang JH, Lai YH, Chiu TL, et al. (2014). Magnetic core-shell nanocapsules with dual-targeting capabilities and co-delivery of multiple drugs to treat brain gliomas. Adv Healthc Mater 3:1250–60.
  • Fang Q, Xu X, Yang L, et al. (2021). Self-assembled 5-fluorouracil-cinnamaldehyde nanodrugs for greatly improved chemotherapy in vivo. J Biomater Appl 36:592–604.
  • Feng Q, Tong R. (2016). Anticancer nanoparticulate polymer-drug conjugate. Bioeng Transl Med 1:277–96.
  • Fu L, Ma X, Liu Y, et al. (2022). Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death. Chin Chem Lett 33:1718–28.
  • Gan D, He W, Yin H, et al. (2020). β-elemene enhances cisplatin-induced apoptosis in bladder cancer cells through the ROS-AMPK signaling pathway. Oncol Lett 19:291–300.
  • Gao C, Tang F, Gong G, et al. (2017a). pH-responsive prodrug nanoparticles based on a sodium alginate derivative for selective co-release of doxorubicin and curcumin into tumor cells. Nanoscale 9:12533–42.
  • Gao J, Fan K, Jin Y, et al. (2019). PEGylated lipid bilayer coated mesoporous silica nanoparticles co-delivery of paclitaxel and curcumin leads to increased tumor site drug accumulation and reduced tumor burden. Eur J Pharm Sci 140:105070.
  • Gao J, Ma X, Zhang L, et al. (2020). Self-assembled disulfide bond bearing paclitaxel-camptothecin prodrug nanoparticle for lung cancer therapy. Pharmaceutics 12:1169.
  • Gao X, Yu T, Xu G, et al. (2017b). Enhancing the anti-glioma therapy of doxorubicin by honokiol with biodegradable self-assembling micelles through multiple evaluations. Sci Rep 7:43501.
  • Gao Y, Zhu Y, Xu X, et al. (2021). Surface PEGylated cancer cell membrane-coated nanoparticles for codelivery of curcumin and doxorubicin for the treatment of multidrug resistant esophageal carcinoma. Front Cell Dev Biol 9:688070.
  • Gu J, Fan YQ, Zhang HL, et al. (2018). Resveratrol suppresses doxorubicin-induced cardiotoxicity by disrupting E2F1 mediated autophagy inhibition and apoptosis promotion. Biochem Pharmacol 150:202–13.
  • Guo F, Yu N, Jiao Y, et al. (2021). Star polyester-based folate acid-targeting nanoparticles for doxorubicin and curcumin co-delivery to combat multidrug-resistant breast cancer. Drug Deliv 28:1709–21.
  • Guo H, Zhang Z, Su Z, et al. (2016). Enhanced anti-tumor activity and reduced toxicity by combination andrographolide and bleomycin in ascitic tumor-bearing mice. Eur J Pharmacol 776:52–63.
  • Guo P, Pi C, Zhao S, et al. (2020a). Oral co-delivery nanoemulsion of 5-fluorouracil and curcumin for synergistic effects against liver cancer. Expert Opin Drug Deliv 17:1473–84.
  • Guo W, Song Y, Song W, et al. (2020b). Co-delivery of doxorubicin and curcumin with polypeptide nanocarrier for synergistic lymphoma therapy. Sci Rep 10:7832.
  • Guo X, Zhao Z, Chen D, et al. (2019). Co-delivery of resveratrol and docetaxel via polymeric micelles to improve the treatment of drug-resistant tumors. Asian J Pharm Sci 14:78–85.
  • Han NN, Li X, Tao L, et al. (2018). Doxorubicin and rhein loaded nanomicelles attenuates multidrug resistance in human ovarian cancer. Biochem Biophys Res Commun 498:178–85.
  • He W, Hu X, Jiang W, et al. (2017). Rational design of a new self-codelivery system from redox-sensitive camptothecin-cytarabine conjugate assembly for effectively synergistic anticancer therapy. Adv Healthcare Mater 6:1700829.
  • He Y, Shao L, Usman I, et al. (2020). A pH-responsive dissociable mesoporous silica-based nanoplatform enabling efficient dual-drug co-delivery and rapid clearance for cancer therapy. Biomater Sci 8:3418–29.
  • Hiremath CG, Heggnnavar GB, Kariduraganavar MY, et al. (2019). Co-delivery of paclitaxel and curcumin to foliate positive cancer cells using pluronic-coated iron oxide nanoparticles. Prog Biomater 8:155–68.
  • Ho JN, Byun SS, Lee S, et al. (2015). Synergistic antitumor effect of triptolide and cisplatin in cisplatin resistant human bladder cancer cells. J Urol 193:1016–22.
  • Hou M, Xue P, Gao YE, et al. (2017). Gemcitabine-camptothecin conjugates: a hybrid prodrug for controlled drug release and synergistic therapeutics. Biomater Sci 5:1889–97.
  • Hu J, Wang J, Wang G, et al. (2016). Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. Int J Mol Med 37:690–702.
  • Hu L, Pang S, Hu Q, et al. (2015). Enhanced antitumor efficacy of folate targeted nanoparticles co-loaded with docetaxel and curcumin. Biomed Pharmacother 75:26–32.
  • Hu Y, Ran M, Wang B, et al. (2020). Co-delivery of docetaxel and curcumin via nanomicelles for enhancing anti-ovarian cancer treatment. Int J Nanomedicine 15:9703–15.
  • Huang C, Yu Y. (2017). Synergistic cytotoxicity of beta-elemene and cisplatin in gingival squamous cell carcinoma by inhibition of STAT3 signaling pathway. Med Sci Monit 23:1507–13.
  • Huang L, Zhang K, Guo Y, et al. (2017). Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts. Sci Rep 7:11989.
  • Huang L, Zhao S, Fang F, et al. (2021). Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 268:120557.
  • Huang PP, Fu J, Liu LH, et al. (2020). Honokiol antagonizes doxorubicininduced cardiomyocyte senescence by inhibiting TXNIP mediated NLRP3 inflammasome activation. Int J Mol Med 45:186–94.
  • Huo M, Wang H, Zhang Y, et al. (2020). Co-delivery of silybin and paclitaxel by dextran-based nanoparticles for effective anti-tumor treatment through chemotherapy sensitization and microenvironment modulation. J Control Release 321:198–210.
  • Jabri T, Imran M, Aziz A, et al. (2019). Design and synthesis of mixed micellar system for enhanced anticancer efficacy of Paclitaxel through its co-delivery with naringin. Drug Dev Ind Pharm 45:703–14.
  • Jacob S, Nair AB, Shah J. (2020). Emerging role of nanosuspensions in drug delivery systems. Biomater Res 24:3.
  • Jain A, Sharma G, Kushwah V, et al. (2017). Methotrexate and beta-carotene loaded-lipid polymer hybrid nanoparticles: a preclinical study for breast cancer. Nanomedicine (Lond) 12:1851–72.
  • Jia L, Li Z, Shen J, et al. (2015). Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance. Int J Pharm 489:318–30.
  • Jiang H, Geng D, Liu H, et al. (2016). Co-delivery of etoposide and curcumin by lipid nanoparticulate drug delivery system for the treatment of gastric tumors. Drug Deliv 23:3665–73.
  • Jiang H, Li ZP, Tian GX, et al. (2019). Liver-targeted liposomes for codelivery of curcumin and combretastatin A4 phosphate: preparation, characterization, and antitumor effects. Int J Nanomedicine 14:1789–804.
  • Jiang L, Li L, He X, et al. (2015). Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials 52:126–39.
  • Kabary DM, Helmy MW, Elkhodairy KA, et al. (2018). Hyaluronate/lactoferrin layer-by-layer-coated lipid nanocarriers for targeted co-delivery of rapamycin and berberine to lung carcinoma. Colloids Surf B Biointerfaces 169:183–94.
  • Karaosmanoglu S, Zhou M, Shi B, et al. (2021). Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release 329:805–32.
  • Katiyar SS, Muntimadugu E, Rafeeqi TA, et al. (2016). Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv 23:2608–16.
  • Kazantseva L, Becerra J, Santos-Ruiz L. (2022). Oridonin enhances antitumor effects of doxorubicin in human osteosarcoma cells. Pharmacol Rep 74:248–56.
  • Khaledi S, Jafari S, Hamidi S, et al. (2020). Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-fluorouracil and Chrysin. J Biomater Sci Polym Ed 31:1107–26.
  • Khan I, Joshi G, Nakhate KT, et al. (2019a). Nano-co-delivery of berberine and anticancer drug using PLGA nanoparticles: exploration of better anticancer activity and in vivo kinetics. Pharm Res 36:149.
  • Khan MM, Madni A, Tahir N, et al. (2020). Co-delivery of curcumin and cisplatin to enhance cytotoxicity of cisplatin using lipid-chitosan hybrid nanoparticles. Int J Nanomedicine 15:2207–17.
  • Khan MW, Zhao P, Khan A, et al. (2019b). Synergism of cisplatin-oleanolic acid co-loaded calcium carbonate nanoparticles on hepatocellular carcinoma cells for enhanced apoptosis and reduced hepatotoxicity. Int J Nanomedicine 14:3753–71.
  • Kunjachan S, Rychlik B, Storm G, et al. (2013). Multidrug resistance: physiological principles and nanomedical solutions. Adv Drug Deliv Rev 65:1852–65.
  • Lan JS, Qin YH, Liu L, et al. (2021a). A carrier-free folate receptor-targeted ursolic acid/methotrexate nanodelivery system for synergetic anticancer therapy. Int J Nanomedicine 16:1775–87.
  • Lan M, Lu W, Zou T, et al. (2021b). Role of inflammatory microenvironment: potential implications for improved breast cancer nano-targeted therapy. Cell Mol Life Sci 78:2105–29.
  • Lan Y, Sun Y, Yang T, et al. (2019). Co-delivery of paclitaxel by a capsaicin prodrug micelle facilitating for combination therapy on breast cancer. Mol Pharm 16:3430–40.ma ceut.9b00209
  • Lee S, Lee SK, Jung J. (2021). Potentiating activities of chrysin in the therapeutic efficacy of 5-fluorouracil in gastric cancer cells. Oncol Lett 21:24.
  • Li C, Ge X, Wang L. (2017a). Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: a synergistic combination nanotherapy for cervical cancer. Biomed Pharmacother 86:628–36.
  • Li C, Lin J, Wu P, et al. (2018a). Small molecule nanodrug assembled of dual-anticancer drug conjugate for synergetic cancer metastasis therapy. Bioconjug Chem 29:3495–502.
  • Li D, Cui R, Xu S, et al. (2020a). Synergism of cisplatin-oleanolic acid co-loaded hybrid nanoparticles on gastric carcinoma cells for enhanced apoptosis and reversed multidrug resistance. Drug Deliv 27:191–9.
  • Li H, Li M, Chen C, et al. (2015a). On-demand combinational delivery of curcumin and doxorubicin via a pH-labile micellar nanocarrier. Int J Pharm 495:572–8.
  • Li J, Duan B, Guo Y, et al. (2018b). Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and epirubicin by activating apoptosis and ameliorating P-glycoprotein activity. Biomed Pharmacother 98:806–12.
  • Li J, Zhang J, Wang Y, et al. (2017b). Synergistic inhibition of migration and invasion of breast cancer cells by dual docetaxel/quercetin-loaded nanoparticles via Akt/MMP-9 pathway. Int J Pharm 523:300–9.
  • Li M, Du C, Guo N, et al. (2019a). Composition design and medical application of liposomes. Eur J Med Chem 164:640–53.
  • Li M, Yue X, Wang Y, et al. (2019b). Remodeling the tumor microenvironment to improve drug permeation and antitumor effects by co-delivering quercetin and doxorubicin. J Mater Chem B 7:7619–26.
  • Li N, Guo W, Li Y, et al. (2020b). Construction and anti-tumor activities of disulfide-linked docetaxel-dihydroartemisinin nanoconjugates. Colloids Surf B Biointerfaces 191:111018.
  • Li Q, Fu D, Zhang J, et al. (2021a). Poly(aspartic acid)-based pH-responsive targeting co-delivery nanoparticles. J Biomater Appl 36:579–91.
  • Li Q, Fu D, Zhang J, et al. (2021b). Dual stimuli-responsive polypeptide-calcium phosphate hybrid nanoparticles for co-delivery of multiple drugs in cancer therapy. Colloids Surf B Biointerfaces 200:111586.
  • Li S, Wang L, Li N, et al. (2017c). Combination lung cancer chemotherapy: design of a pH-sensitive transferrin-PEG-Hz-lipid conjugate for the co-delivery of docetaxel and baicalin. Biomed Pharmacother 95:548–55.
  • Li W, Hu X, Wang S, et al. (2020c). Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation. Int J Biol Macromol 145:985–97.
  • Li WM, Chiang CS, Huang WC, et al. (2015b). Amifostine-conjugated pH-sensitive calcium phosphate-covered magnetic-amphiphilic gelatin nanoparticles for controlled intracellular dual drug release for dual-targeting in HER-2-overexpressing breast cancer. J Control Release 220:107–18.
  • Li X, Yang S, Wang L, et al. (2019c). Resveratrol inhibits paclitaxel-induced neuropathic pain by the activation of PI3K/Akt and SIRT1/PGC1alpha pathway. JPR 12:879–90. S185873
  • Li X, Yu N, Li J, et al. (2020d). Novel "carrier-free" nanofiber codelivery systems with the synergistic antitumor effect of paclitaxel and tetrandrine through the enhancement of mitochondrial apoptosis. ACS Appl Mater Interfaces 12:10096–106.
  • Li Y, Li D, Wang P, et al. (2020e). Tetrandrine partially reverses multidrug resistance of human laryngeal cancer cells. J Int Med Res 48:300060520944706.
  • Li Y, Li X, Lu Y, et al. (2020f). Co-delivery of Poria cocos extract and doxorubicin as an ‘all-in-one’ nanocarrier to combat breast cancer multidrug resistance during chemotherapy. Nanomedicine 23:102095.
  • Li Y, Lin J, Ma J, et al. (2017d). Methotrexate-camptothecin prodrug nanoassemblies as a versatile nanoplatform for biomodal imaging-guided self-active targeted and synergistic chemotherapy. ACS Appl Mater Interfaces 9:34650–65.
  • Li Z, Zhang Y, Zhu C, et al. (2020g). Folic acid modified lipid-bilayer coated mesoporous silica nanoparticles co-loading paclitaxel and tanshinone IIA for the treatment of acute promyelocytic leukemia. Int J Pharm 586:119576.
  • Liao D, Zhang W, Gupta P, et al. (2019). Tetrandrine interaction with ABCB1 reverses multidrug resistance in cancer cells through competition with anti-cancer drugs followed by downregulation of ABCB1 expression. Molecules 24:4383.
  • Lin D, Lin W, Gao G, et al. (2020). Purification and characterization of the major protein isolated from Semen Armeniacae Amarum and the properties of its thermally induced nanoparticles. Int J Biol Macromol 159:850–8.
  • Lin J, Cai Q, Tang Y, et al. (2018). PEGylated lipid bilayer coated mesoporous silica nanoparticles for co-delivery of paclitaxel and curcumin: design, characterization and its cytotoxic effect. Int J Pharm 536:272–82.
  • Lin JT, Ye QB, Yang QJ, et al. (2019). Hierarchical bioresponsive nanocarriers for codelivery of curcumin and doxorubicin. Colloids Surf B Biointerfaces 180:93–101.
  • Liu H, Yuan M, Liu Y, et al. (2021a). Self-monitoring and self-delivery of self-assembled fluorescent nanoparticles in cancer therapy. Int J Nanomedicine 16:2487–99.
  • Liu J, Cheng H, Han L, et al. (2018). Synergistic combination therapy of lung cancer using paclitaxel- and triptolide-coloaded lipid-polymer hybrid nanoparticles. Drug Des Devel Ther 12:3199–209.
  • Liu K, Chen W, Yang T, et al. (2017). Paclitaxel and quercetin nanoparticles co-loaded in microspheres to prolong retention time for pulmonary drug delivery. Int J Nanomedicine 12:8239–55.
  • Liu L, Qi XJ, Zhong ZK, et al. (2016a). Nanomedicine-based combination of gambogic acid and retinoic acid chlorochalcone for enhanced anticancer efficacy in osteosarcoma. Biomed Pharmacother 83:79–84.
  • Liu M, Fu M, Yang X, et al. (2020a). Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf B Biointerfaces 196:111284.
  • Liu Q, Li J, Pu G, et al. (2016b). Co-delivery of baicalein and doxorubicin by hyaluronic acid decorated nanostructured lipid carriers for breast cancer therapy. Drug Deliv 23:1364–8.
  • Liu Y, Yang S, Wang K, et al. (2020b). Cellular senescence and cancer: focusing on traditional Chinese medicine and natural products. Cell Prolif 53:e12894.
  • Liu Z, Chu W, Sun Q, et al. (2021b). Micelle-contained and PEGylated hybrid liposomes of combined gemcitabine and cisplatin delivery for enhancing antitumor activity. Int J Pharm 602:120619.
  • Lockhart JN, Stevens DM, Beezer DB, et al. (2015). Dual drug delivery of tamoxifen and quercetin: regulated metabolism for anticancer treatment with nanosponges. J Control Release 220:751–7.
  • Lőrincz A, Mihály J, Wacha A, et al. (2021). Combination of multifunctional ursolic acid with kinase inhibitors for anti-cancer drug carrier vesicles. Mater Sci Eng C Mater Biol Appl 131:112481.
  • Lu L, Zhang M, Wang X, et al. (2020a). Baicalein enhances the antitumor efficacy of docetaxel on nonsmall cell lung cancer in a beta-catenin-dependent manner. Phytother Res 34:104–17.
  • Lu X, Yang F, Chen D, et al. (2020b). Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. Int J Biol Sci 16:1121–34.
  • Lu Y, Wang J, Liu L, et al. (2017a). Curcumin increases the sensitivity of Paclitaxel-resistant NSCLC cells to paclitaxel through microRNA-30c-mediated MTA1 reduction. Tumour Biol 39:1010428317698353.
  • Lu Z, Su J, Li Z, et al. (2017b). Hyaluronic acid-coated, prodrug-based nanostructured lipid carriers for enhanced pancreatic cancer therapy. Drug Dev Ind Pharm 43:160–70.
  • Lv L, Liu C, Chen C, et al. (2016a). Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer. Oncotarget 7:32184–99.
  • Lv L, Qiu K, Yu X, et al. (2016b). Amphiphilic copolymeric micelles for doxorubicin and curcumin co-delivery to reverse multidrug resistance in breast cancer. J Biomed Nanotechnol 12:973–85.
  • Lv X, Zhu Y, Deng Y, et al. (2020). Glycyrrhizin improved autophagy flux via HMGB1-dependent Akt/mTOR signaling pathway to prevent doxorubicin-induced cardiotoxicity. Toxicology 441:152508.
  • Ma X, Yang S, Zhang T, et al. (2022). Bioresponsive immune-booster-based prodrug nanogel for cancer immunotherapy. Acta Pharm Sin B 12:451–66.
  • Mahira S, Kommineni N, Husain GM, et al. (2019). Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: a new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomed Pharmacother 110:803–17.
  • Mahmoudi R, Hassandokht F, Ardakani MT, et al. (2021). Intercalation of curcumin into liposomal chemotherapeutic agent augments apoptosis in breast cancer cells. J Biomater Appl 35:1005–18.
  • Majidinia M, Mirza-Aghazadeh-Attari M, Rahimi M, et al. (2020). Overcoming multidrug resistance in cancer: recent progress in nanotechnology and new horizons. IUBMB Life 72:855–71.
  • Maleki H, Hosseini Najafabadi MR, Webster TJ, et al. (2021). Effect of paclitaxel/etoposide co-loaded polymeric nanoparticles on tumor size and survival rate in a rat model of glioblastoma. Int J Pharm 604:120722.
  • Martinez-Edo G, Fornaguera C, Borros S, et al. (2020). Glycyrrhetinic acid-functionalized mesoporous silica nanoparticles for the co-delivery of DOX/CPT-PEG for targeting HepG2 cells. Pharmaceutics 12:1048.
  • Meng J, Guo F, Xu H, et al. (2016a). Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo. Sci Rep 6:22390.
  • Meng L, Xia X, Yang Y, et al. (2016b). Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition. Int J Pharm 513:8–16.
  • Mi FL, Wang LF, Chu PY, et al. (2018). Active tumor-targeted co-delivery of epigallocatechin gallate and doxorubicin in nanoparticles for combination gastric cancer therapy. ACS Biomater Sci Eng 4:2847–59.
  • Mohammad IS, He W, Yin L. (2020). Insight on multidrug resistance and nanomedicine approaches to overcome MDR. Crit Rev Ther Drug Carrier Syst 37:473–509.
  • Mohanty AK, Mohanta GP. (2015). Micelle-assisted combination therapies for effective glioblastoma treatment: an in-vitro assessment. Anticancer Drugs 26:312–22.
  • Muthusamy G, Balupillai A, Ramasamy K, et al. (2016). Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines. Eur J Pharmacol 786:194–203.
  • Nguyen NT, Nguyen NNT, Tran NTN, et al. (2018). Synergic activity against MCF-7 breast cancer cell growth of nanocurcumin-encapsulated and cisplatin-complexed nanogels. Molecules 23:3347.
  • Oz M, Nurullahoglu Atalik KE, Yerlikaya FH, et al. (2015). Curcumin alleviates cisplatin-induced learning and memory impairments. Neurobiol Learn Mem 123:43–9.
  • Ozkaya D, Naziroglu M. (2020). Curcumin diminishes cisplatin-induced apoptosis and mitochondrial oxidative stress through inhibition of TRPM2 channel signaling pathway in mouse optic nerve. J Recept Signal Transduct Res 40:97–108.
  • Ozturk Y, Gunaydin C, Yalcin F, et al. (2019). Resveratrol enhances apoptotic and oxidant effects of paclitaxel through TRPM2 channel activation in DBTRG glioblastoma cells. Oxid Med Cell Longev 2019:4619865.
  • Pang L, Zhang L, Zhou H, et al. (2022). Reactive oxygen species-responsive nanococktail with self-amplificated drug release for efficient co-delivery of paclitaxel/cucurbitacin B and synergistic treatment of gastric cancer. Front Chem 10:844426.
  • Pangeni R, Panthi VK, Yoon IS, et al. (2018). Preparation, characterization, and in vivo evaluation of an oral multiple nanoemulsive system for co-delivery of pemetrexed and quercetin. Pharmaceutics 10:158.
  • Peng J, Fumoto S, Miyamoto H, et al. (2017). One-step formation of lipid-polyacrylic acid-calcium carbonate nanoparticles for co-delivery of doxorubicin and curcumin. J Drug Target 25:704–14.
  • Phung CD, Le TG, Nguyen VH, et al. (2020). PEGylated-paclitaxel and dihydroartemisinin nanoparticles for simultaneously delivering paclitaxel and dihydroartemisinin to colorectal cancer. Pharm Res 37:129.
  • Pillai VB, Kanwal A, Fang YH, et al. (2017). Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget 8:34082–98.
  • Potocnjak I, Simic L, Vukelic I, et al. (2019). Oleanolic acid attenuates cisplatin-induced nephrotoxicity in mice and chemosensitizes human cervical cancer cells to cisplatin cytotoxicity. Food Chem Toxicol 132:110676.
  • Qi M, Zou S, Guo C, et al. (2018). Enhanced in vitro and in vivo anticancer properties by using a nanocarrier for co-delivery of antitumor polypeptide and curcumin. J Biomed Nanotechnol 14:139–49.
  • Qi SS, Sun JH, Yu HH, et al. (2017). Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv 24:1909–26.
  • Quagliariello V, Iaffaioli RV, Armenia E, et al. (2017). Hyaluronic acid nanohydrogel loaded with quercetin alone or in combination to a macrolide derivative of rapamycin RAD001 (everolimus) as a new treatment for hormone-responsive human breast cancer. J Cell Physiol 232:2063–74.
  • Rawal S, Bora V, Patel B, et al. (2020a). Surface-engineered nanostructured lipid carrier systems for synergistic combination oncotherapy of non-small cell lung cancer. Drug Deliv Transl Res 11:2030–51.
  • Rawal S, Patel B, Patel MM. (2020b). Fabrication, optimisation and in vitro evaluation of docetaxel and curcumin co-loaded nanostructured lipid carriers for improved antitumor activity against non-small cell lung carcinoma. J Microencapsul 37:543–56.
  • Ren Y, Li X, Han B, et al. (2019). Improved anti-colorectal carcinomatosis effect of tannic acid co-loaded with oxaliplatin in nanoparticles encapsulated in thermosensitive hydrogel. Eur J Pharm Sci 128:279–89.
  • Rudnik LAC, Farago PV, Manfron Budel J, et al. (2020). Co-loaded curcumin and methotrexate nanocapsules enhance cytotoxicity against non-small-cell lung cancer cells. Molecules 25:1913.
  • Ruttala HB, Ko YT. (2015). Liposomal co-delivery of curcumin and albumin/paclitaxel nanoparticle for enhanced synergistic antitumor efficacy. Colloids Surf B Biointerfaces 128:419–26.
  • Sabra SA, Elzoghby AO, Sheweita SA, et al. (2018). Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer. Eur J Pharm Biopharm 128:156–69.
  • Sabzi A, Rahmani A, Edalati M, et al. (2020). Targeted co-delivery of curcumin and doxorubicin by citric acid functionalized Poly (epsilon-caprolactone) based micelle in MDA-MB-231 cell. Colloids Surf B Biointerfaces 194:111225.
  • Sahu BP, Hazarika H, Bharadwaj R, et al. (2016). Curcumin-docetaxel co-loaded nanosuspension for enhanced anti-breast cancer activity. Expert Opin Drug Deliv 13:1065–74.
  • Saneja A, Kumar R, Mintoo MJ, et al. (2019). Gemcitabine and betulinic acid co-encapsulated PLGA-PEG polymer nanoparticles for improved efficacy of cancer chemotherapy. Mater Sci Eng C Mater Biol Appl 98:764–71.
  • Sang DP, Li RJ, Lan Q. (2014). Quercetin sensitizes human glioblastoma cells to temozolomide in vitro via inhibition of Hsp27. Acta Pharmacol Sin 35:832–8.
  • Sarisozen C, Dhokai S, Tsikudo EG, et al. (2016). Nanomedicine based curcumin and doxorubicin combination treatment of glioblastoma with scFv-targeted micelles: In vitro evaluation on 2D and 3D tumor models. Eur J Pharm Biopharm 108:54–67.
  • Sesarman A, Tefas L, Sylvester B, et al. (2019). Co-delivery of curcumin and doxorubicin in PEGylated liposomes favored the antineoplastic C26 murine colon carcinoma microenvironment. Drug Deliv Transl Res 9:260–72.
  • Shao Y, Luo W, Guo Q, et al. (2019). In vitro and in vivo effect of hyaluronic acid modified, doxorubicin and gallic acid co-delivered lipid-polymeric hybrid nano-system for leukemia therapy. Drug Des Devel Ther 13:2043–55.
  • Shen Q, Qiu L. (2017). Reversal of P-glycoprotein-mediated multidrug resistance by doxorubicin and quinine co-loaded liposomes in tumor cells. J Liposome Res 27:293–301.
  • Shen S, Xu X, Lin S, et al. (2021). A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nat Nanotechnol 16:104–13.
  • Siegel RL, Miller KD, Fuchs HE, et al. (2021). Cancer Statistics, 2021. CA Cancer J Clin 71:7–33.
  • Soetikno V, Sari SDP, Ul Maknun L, et al. (2019). Pre-treatment with curcumin ameliorates cisplatin-induced kidney damage by suppressing kidney inflammation and apoptosis in rats. Drug Res (Stuttg) 69:75–82.
  • Sohail M, Guo W, Li Z, et al. (2021). Nanocarrier-based drug delivery system for cancer therapeutics: a review of the last decade. Curr Med Chem 28:3753–72.
  • Song Z, Shi Y, Han Q, et al. (2018). Endothelial growth factor receptor-targeted and reactive oxygen species-responsive lung cancer therapy by docetaxel and resveratrol encapsulated lipid-polymer hybrid nanoparticles. Biomed Pharmacother 105:18–26.
  • Sun G, Sun K, Sun J. (2021a). Combination prostate cancer therapy: prostate-specific membranes antigen targeted, pH-sensitive nanoparticles loaded with doxorubicin and tanshinone. Drug Deliv 28:1132–40.
  • Sun L, Cao J, Chen K, et al. (2019). Betulinic acid inhibits stemness and EMT of pancreatic cancer cells via activation of AMPK signaling. Int J Oncol 54:98–110.
  • Sun Y, Ma X, Hu H. (2021b). Marine polysaccharides as a versatile biomass for the construction of nano drug delivery systems. Mar Drugs 19:345.
  • Tai W, Mo R, Lu Y, et al. (2014). Folding graft copolymer with pendant drug segments for co-delivery of anticancer drugs. Biomaterials 35:7194–203.
  • Tang Y, Liang J, Wu A, et al. (2017). Co-delivery of trichosanthin and albendazole by nano-self-assembly for overcoming tumor multidrug-resistance and metastasis. ACS Appl Mater Interfaces 9:26648–64.
  • Tapeinos C, Battaglini M, Ciofani G. (2017). Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 264:306–32.
  • Tefas LR, Sylvester B, Tomuta I, et al. (2017). Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach. Drug Des Devel Ther 11:1605–21.
  • Thandavarayan RA, Giridharan VV, Arumugam S, et al. (2015). Schisandrin B prevents doxorubicin induced cardiac dysfunction by modulation of DNA damage, oxidative stress and inflammation through inhibition of MAPK/p53 signaling. PLoS One 10:e0119214.
  • Vakilinezhad MA, Amini A, Dara T, et al. (2019). Methotrexate and curcumin co-encapsulated PLGA nanoparticles as a potential breast cancer therapeutic system: In vitro and in vivo evaluation. Colloids Surf B Biointerfaces 184:110515.
  • Varshosaz J, Jandaghian S, Mirian M, et al. (2021). Co-delivery of rituximab targeted curcumin and imatinib nanostructured lipid carriers in non-Hodgkin lymphoma cells. J Liposome Res 31:64–78.
  • Vinod BS, Nair HH, Vijayakurup V, et al. (2015). Resveratrol chemosensitizes HER-2-overexpressing breast cancer cells to docetaxel chemoresistance by inhibiting docetaxel-mediated activation of HER-2-Akt axis. Cell Death Discov 1:15061.
  • Wan X, Beaudoin JJ, Vinod N, et al. (2019). Co-delivery of paclitaxel and cisplatin in poly(2-oxazoline) polymeric micelles: implications for drug loading, release, pharmacokinetics and outcome of ovarian and breast cancer treatments. Biomaterials 192:1–14.
  • Wang B, Gou M, Zheng X, et al. (2010). Co-delivery honokiol and doxorubicin in MPEG-PLA nanoparticles. J Nanosci Nanotechnol 10:4166–72.
  • Wang C, Su L, Wu C, et al. (2016). RGD peptide targeted lipid-coated nanoparticles for combinatorial delivery of sorafenib and quercetin against hepatocellular carcinoma. Drug Dev Ind Pharm 42:1938–44.
  • Wang C, Zhu J, Ma J, et al. (2019a). Functionalized Bletilla striata polysaccharide micelles for targeted intracellular delivery of doxorubicin: in vitro and in vivo evaluation. Int J Pharm 567:118436.
  • Wang J, Ma W, Tu P. (2015a). Synergistically improved anti-tumor efficacy by co-delivery doxorubicin and curcumin polymeric micelles. Macromol Biosci 15:1252–61.
  • Wang MZ, He X, Yu Z, et al. (2020). A nano drug delivery system based on Angelica sinensis polysaccharide for combination of chemotherapy and immunotherapy. Molecules 25:3096.
  • Wang QS, Gao LN, Zhu XN, et al. (2019b). Co-delivery of glycyrrhizin and doxorubicin by alginate nanogel particles attenuates the activation of macrophage and enhances the therapeutic efficacy for hepatocellular carcinoma. Theranostics 9:6239–55.
  • Wang R, Huang J, Chen J, et al. (2019c). Enhanced anti-colon cancer efficacy of 5-fluorouracil by epigallocatechin-3-gallate co-loaded in wheat germ agglutinin-conjugated nanoparticles. Nanomedicine 21:102068.
  • Wang R, Yang M, Li G, et al. (2019d). Paclitaxel-betulinic acid hybrid nanosuspensions for enhanced anti-breast cancer activity. Colloids Surf B Biointerfaces 174:270–9.
  • Wang S, Wang A, Shao M, et al. (2017). Schisandrin B reverses doxorubicin resistance through inhibiting P-glycoprotein and promoting proteasome-mediated degradation of survivin. Sci Rep 7:8419.
  • Wang W, Xi M, Duan X, et al. (2015b). Delivery of baicalein and paclitaxel using self-assembled nanoparticles: synergistic antitumor effect in vitro and in vivo. Int J Nanomedicine 10:3737–50.
  • Wang X, Liu Y, Xu W, et al. (2021). Irinotecan and berberine co-delivery liposomes showed improved efficacy and reduced intestinal toxicity compared with onivyde for pancreatic cancer. Drug Deliv Transl Res 11:2186–97.
  • Wu L, Cao K, Ni Z, et al. (2019a). Rhein reverses doxorubicin resistance in SMMC-7721 liver cancer cells by inhibiting energy metabolism and inducing mitochondrial permeability transition pore opening. Biofactors 45:85–96.
  • Wu L, Liu X, Cao KX, et al. (2020a). Synergistic antitumor effects of rhein and doxorubicin in hepatocellular carcinoma cells. J Cell Biochem 121:4009–21.
  • Wu YZ, Zhang L, Wu ZX, et al. (2019b). Berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway. Oxid Med Cell Longev 2019:2150394.
  • Wu Z, Li S, Cai Y, et al. (2020b). Synergistic action of doxorubicin and 7-ethyl-10-hydroxycamptothecin polyphosphorylcholine polymer prodrug. Colloids Surf B Biointerfaces 189:110741.
  • Xiao H, Xiong L, Song X, et al. (2017). Angelica sinensis polysaccharides ameliorate stress-induced premature senescence of hematopoietic cell via protecting bone marrow stromal cells from oxidative injuries caused by 5-fluorouracil. Int J Mol Sci 18:2265.
  • Xiao Y, Zhang T, Ma X, et al. (2021). Microenvironment-responsive prodrug-induced pyroptosis boosts cancer immunotherapy. Adv Sci (Weinh) 8:e2101840.
  • Xiong K, Zhang Y, Wen Q, et al. (2020). Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy. Int J Pharm 589:119875.
  • Xu H, Lu X, Li J, et al. (2017a). Superior antitumor effect of extremely high drug loading self-assembled paclitaxel nanofibers. Int J Pharm 526:217–24.
  • Xu J, Geng MY, Hang M. (2019a). Mechanistic advancement in chemotherapeutic agents modulated antitumor immune response. Acta Pharmaceutica Sinica 54:1741–8.
  • Xu J, Liu D, Niu H, et al. (2017b). Resveratrol reverses Doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J Exp Clin Cancer Res 36:19.
  • Xu M, Li G, Zhang H, et al. (2020). Sequential delivery of dual drugs with nanostructured lipid carriers for improving synergistic tumor treatment effect. Drug Deliv 27:983–95.
  • Xu Y, Huang Y, Lu W, et al. (2019b). 4-Carboxyphenylboronic acid-decorated, redox-sensitive rod-shaped nano-micelles fabricated through co-assembling strategy for active targeting and synergistic co-delivery of camptothecin and gemcitabine. Eur J Pharm Biopharm 144:193–206.
  • Xu Y, Huang Y, Zhang X, et al. (2018). Carrier-free Janus nano-prodrug based on camptothecin and gemcitabine: reduction-triggered drug release and synergistic in vitro antiproliferative effect in multiple cancer cells. Int J Pharm 550:45–56.
  • Xu Y, Liu Y, Liu Q, et al. (2021). Co-delivery of bufalin and nintedanib via albumin sub-microspheres for synergistic cancer therapy. J Control Release 338:705–18.
  • Xu Y, Wang C, Ding Y, et al. (2016). Nanoparticles with optimal ratiometric co-delivery of docetaxel with gambogic acid for treatment of multidrug-resistant breast cancer. J Biomed Nanotechnol 12:1774–81.
  • Xue P, Liu D, Wang J, et al. (2016). Redox-sensitive citronellol-cabazitaxel conjugate: maintained in vitro cytotoxicity and self-assembled as multifunctional nanomedicine. Bioconjug Chem 27:1360–72.
  • Yan J, Wang Y, Jia Y, et al. (2017). Co-delivery of docetaxel and curcumin prodrug via dual-targeted nanoparticles with synergistic antitumor activity against prostate cancer. Biomed Pharmacother 88:374–83.
  • Yang M, Li J, Gu P, et al. (2021). The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment. Bioact Mater 6:1973–87.
  • Yang Z, Sun N, Cheng R, et al. (2017a). Hybrid nanoparticles coated with hyaluronic acid lipoid for targeted co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells. J Mater Chem B 5:6762–75.
  • Yang Z, Sun N, Cheng R, et al. (2017b). pH multistage responsive micellar system with charge-switch and PEG layer detachment for co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells. Biomaterials 147:53–67.
  • Yao Q, Gutierrez DC, Hoang NH, et al. (2017). Efficient codelivery of paclitaxel and curcumin by novel bottlebrush copolymer-based micelles. Mol Pharm 14:2378–89.
  • Yin J, Li Q, Sun LD, et al. (2019). Research advancement in natural anti-cancer product. Zhongguo Zhong Yao Za Zhi 44:19–27.
  • Yokoyama M. (2014). Polymeric micelles as drug carriers: their lights and shadows. J Drug Target 22:576–83.
  • Yu M, Qi B, Xiaoxiang W, et al. (2017). Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-kappaB pathway. Biomed Pharmacother 90:677–85.
  • Yu X, Sun L, Tan L, et al. (2020). Preparation and characterization of PLGA-PEG-PLGA nanoparticles containing salidroside and tamoxifen for breast cancer therapy. AAPS PharmSciTech 21:85.
  • Yuan CH, Horng CT, Lee CF, et al. (2017). Epigallocatechin gallate sensitizes cisplatin-resistant oral cancer CAR cell apoptosis and autophagy through stimulating AKT/STAT3 pathway and suppressing multidrug resistance 1 signaling. Environ Toxicol 32:845–55.
  • Yukuyama MN, Kato ETM, Lobenberg R, et al. (2017). Challenges and future prospects of nanoemulsion as a drug delivery system. Curr Pharm Des 23:495–508.
  • Zan Y, Dai Z, Liang L, et al. (2019). Co-delivery of plantamajoside and sorafenib by a multi-functional nanoparticle to combat the drug resistance of hepatocellular carcinoma through reprograming the tumor hypoxic microenvironment. Drug Deliv 26:1080–91.
  • Zang X, Cheng M, Zhang X, et al. (2021). Quercetin nanoformulations: a promising strategy for tumor therapy. Food Funct 12:6664–81.
  • Zeng X, Zhang Y, Xu X, et al. (2022). Construction of pH-sensitive targeted micelle system co-delivery with curcumin and dasatinib and evaluation of anti-liver cancer. Drug Deliv 29:792–806.
  • Zeng YY, Zeng YJ, Zhang NN, et al. (2019). The preparation, determination of a flexible complex liposome co-loaded with cabazitaxel and β-elemene, and animal pharmacodynamics on paclitaxel-resistant lung adenocarcinoma. Molecules 24:1697.
  • Zhai B, Zhang N, Han X, et al. (2019). Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: a review. Biomed Pharmacother 114:108812.
  • Zhan XK, Li JL, Zhang S, et al. (2018). Betulinic acid exerts potent antitumor effects on paclitaxel-resistant human lung carcinoma cells (H460) via G2/M phase cell cycle arrest and induction of mitochondrial apoptosis. Oncol Lett 16:3628–34.
  • Zhang D, Xu Q, Wang N, et al. (2018a). A complex micellar system co-delivering curcumin with doxorubicin against cardiotoxicity and tumor growth. Int J Nanomedicine 13:4549–61.
  • Zhang F, Jia Y, Zheng X, et al. (2019a). Janus nanocarrier-based co-delivery of doxorubicin and berberine weakens chemotherapy-exacerbated hepatocellular carcinoma recurrence. Acta Biomater 100:352–64.
  • Zhang H, Tian Y, Zhu Z, et al. (2016a). Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation. Sci Rep 6:26546.
  • Zhang J, Hu K, Di L, et al. (2021a). Traditional herbal medicine and nanomedicine: converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 178:113964.
  • Zhang J, Li J, Shi Z, et al. (2017a). pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater 58:349–64.
  • Zhang J, Wang L, Fai Chan H, et al. (2017b). Co-delivery of paclitaxel and tetrandrine via iRGD peptide conjugated lipid-polymer hybrid nanoparticles overcome multidrug resistance in cancer cells. Sci Rep 7:46057.
  • Zhang L, Zhu H, Gu Y, et al. (2019b). Dual drug-loaded PLA nanoparticles bypassing drug resistance for improved leukemia therapy. J Nanopart Res 21:83.
  • Zhang R, Lu M, Zhang Z, et al. (2016b). Resveratrol reverses P-glycoprotein-mediated multidrug resistance of U2OS/ADR cells by suppressing the activation of the NF-kappaB and p38 MAPK signaling pathways. Oncol Lett 12:4147–54.
  • Zhang R, Zhang Y, Zhang Y, et al. (2020a). Ratiometric delivery of doxorubicin and berberine by liposome enables superior therapeutic index than DoxilⓇ. Asian J Pharm Sci 15:385–96.
  • Zhang S, Guo W. (2021). β-elemene enhances the sensitivity of osteosarcoma cells to doxorubicin via downregulation of peroxiredoxin-1. Onco Targets Ther 14:3599–609.
  • Zhang T, Xiong H, Ma X, et al. (2021b). Supramolecular tadalafil nanovaccine for cancer immunotherapy by alleviating myeloid-derived suppressor cells and heightening immunogenicity. Small Methods 5:e2100115.
  • Zhang X, Huang J, Yu C, et al. (2020b). Quercetin enhanced paclitaxel therapeutic effects towards PC-3 prostate cancer through ER stress induction and ROS production. Onco Targets Ther 13:513–23.
  • Zhang X, Li L, Liu Q, et al. (2019c). Co-delivery of rose bengal and doxorubicin nanoparticles for combination photodynamic and chemo-therapy. J Biomed Nanotechnol 15:184–95.
  • Zhang X, Pei Z, Chen J, et al. (2016c). Exosomes for immunoregulation and therapeutic intervention in cancer. J Cancer 7:1081–7.
  • Zhang XK, Wang QW, Xu YJ, et al. (2021c). Co-delivery of cisplatin and oleanolic acid by silica nanoparticles-enhanced apoptosis and reverse multidrug resistance in lung cancer. Kaohsiung J Med Sci 37:505–12.
  • Zhang Y, Xiao C, Li M, et al. (2013). Co-delivery of 10-hydroxycamptothecin with doxorubicin conjugated prodrugs for enhanced anticancer efficacy. Macromol Biosci 13:584–94.
  • Zhang Y, Yang C, Wang W, et al. (2016d). Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep 6:21225.
  • Zhang Z, Xu S, Wang Y, et al. (2018b). Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J Colloid Interface Sci 509:47–57.
  • Zhao MD, Li JQ, Chen FY, et al. (2019). Co-delivery of curcumin and paclitaxel by "core-shell" targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. Int J Nanomedicine 14:9453–67.
  • Zhao X, Chen Q, Li Y, et al. (2015a). Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Eur J Pharm Biopharm 93:27–36.
  • Zhao Y, Cai C, Liu M, et al. (2020a). Drug-binding albumins forming stabilized nanoparticles for co-delivery of paclitaxel and resveratrol: in vitro/in vivo evaluation and binding properties investigation. Int J Biol Macromol 153:873–82.
  • Zhao Y, Chen F, Pan Y, et al. (2015b). Nanodrug formed by coassembly of dual anticancer drugs to inhibit cancer cell drug resistance. ACS Appl Mater Interfaces 7:19295–305.
  • Zhao Y, Huan ML, Liu M, et al. (2016). Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance. Sci Rep 6:35267.
  • Zhao Y, Wang K, Zheng Y, et al. (2020b). Co-delivery of salinomycin and curcumin for cancer stem cell treatment by inhibition of cell proliferation, cell cycle arrest, and epithelial-mesenchymal transition. Front Chem 8:601649.
  • Zheng D, Zhao J, Li Y, et al. (2021a). Self-assembled pH-sensitive nanoparticles based on Ganoderma lucidum polysaccharide–methotrexate conjugates for the co-delivery of anti-tumor drugs. ACS Biomater Sci Eng 7:3764–73.
  • Zheng S, Wang J, Ding N, et al. (2021b). Prodrug polymeric micelles integrating cancer-associated fibroblasts deactivation and synergistic chemotherapy for gastric cancer. J Nanobiotechnology 19:381.
  • Zhu Y, Wen LM, Li R, et al. (2019). Recent advances of nano-drug delivery system in oral squamous cell carcinoma treatment. Eur Rev Med Pharmacol Sci 23:9445–53.
  • Zou L, Wang D, Hu Y, et al. (2017). Drug resistance reversal in ovarian cancer cells of paclitaxel and borneol combination therapy mediated by PEG-PAMAM nanoparticles. Oncotarget 8:60453–68.
  • Zucker D, Barenholz Y. (2010). Optimization of vincristine-topotecan combination–paving the way for improved chemotherapy regimens by nanoliposomes. J Control Release 146:326–33.