1,297
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Surface-tailoring of emulsomes for boosting brain delivery of vinpocetine via intranasal route: in vitro optimization and in vivo pharmacokinetic assessment

, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2671-2684 | Received 31 May 2022, Accepted 01 Aug 2022, Published online: 16 Aug 2022

References

  • Abdel-Mottaleb MM, Lamprecht A. (2011). Standardized in vitro drug release test for colloidal drug carriers using modified USP dissolution apparatus I. Drug Dev Ind Pharm 37:178–84.
  • Ahirrao M, Shrotriya S. (2017). In vitro and in vivo evaluation of cubosomal in situ nasal gel containing resveratrol for brain targeting. Drug Dev Ind Pharm 43:1686–93.
  • Ahmed TA, Badr-Eldin SM, Ahmed OA, Aldawsari H. (2018). Intranasal optimized solid lipid nanoparticles loaded in situ gel for enhancing trans-mucosal delivery of simvastatin. J Drug Delivery Sci Technol 48:499–508.
  • Al Asmari AK, Ullah Z, Tariq M, Fatani A. (2016). Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. DDDT 10:205–15.
  • Aldawsari HM, Ahmed OAA, Alhakamy NA, et al. (2021). Lipidic nano-sized emulsomes potentiates the cytotoxic and apoptotic effects of raloxifene hydrochloride in mcf-7 human breast cancer cells: factorial analysis and in vitro anti-tumor activity assessment. Pharmaceutics 13:783.
  • Arumugam K, Subramanian GS, Mallayasamy SR, et al. (2008). A study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharm 58:287–97.
  • Awan ZA, Fahmy UA, Badr-Eldin SM, et al. (2020). The enhanced cytotoxic and pro-apoptotic effects of optimized simvastatin-loaded emulsomes on MCF-7 breast cancer cells. Pharmaceutics 12:597.
  • Banks WA, Sharma P, Bullock KM, et al. (2020). Transport of extracellular vesicles across the blood-brain barrier: brain pharmacokinetics and effects of inflammation. Int J Mol Sci 21:4407.
  • Betzer O, Shilo M, Opochinsky R, et al. (2017). The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study. Nanomedicine (Lond) 12:1533–46.
  • Bors LA, Erdő F. (2019). Overcoming the blood–brain barrier. Challenges and tricks for CNS drug delivery. Sci Pharm 87:6.
  • Carmona-Ribeiro AM, de Melo Carrasco LD. (2013). Cationic antimicrobial polymers and their assemblies. Int J Mol Sci 14:9906–46.
  • Caruso G, Caraci F, Jolivet RB. (2019). Pivotal role of carnosine in the modulation of brain cells activity: multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Prog Neurobiol 175:35–53.
  • Caruso G, Godos J, Privitera A, et al. (2022). Phenolic acids and prevention of cognitive decline: polyphenols with a neuroprotective role in cognitive disorders and Alzheimer’s disease. Nutrients 14:819.
  • Danaei M, Dehghankhold M, Ataei S, et al. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57.
  • Ding J, Li J, Mao S. (2015). Development and evaluation of vinpocetine inclusion complex for brain targeting. Asian J Pharm Sci 10:114–20.
  • El-Laithy HM, Shoukry O, Mahran LG. (2011). Novel sugar esters proniosomes for transdermal delivery of vinpocetine: preclinical and clinical studies. Eur J Pharm Biopharm 77:43–55.
  • El-Zaafarany GM, Soliman ME, Mansour S, Awad GA. (2016). Identifying lipidic emulsomes for improved oxcarbazepine brain targeting: in vitro and rat in vivo studies. Int J Pharm 503:127–40.
  • El-Zaafarany GM, Soliman ME, Mansour S, et al. (2018). A tailored thermosensitive PLGA-PEG-PLGA/emulsomes composite for enhanced oxcarbazepine brain delivery via the nasal route. Pharmaceutics 10:217.
  • Erdő F, Bors LA, Farkas D, et al. (2018). Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull 143:155–70.
  • Esfahani MKM, Alavi SE, Akbarzadeh A, et al. (2014). PEGylation of nanoliposomal paclitaxel enhances its efficacy in breast cancer. Trop J Pharm Res 13:1195–8.
  • Fahmy UA, Aldawsari HM, Badr-Eldin SM, et al. (2020). The encapsulation of febuxostat into emulsomes strongly enhances the cytotoxic potential of the drug on HCT 116 colon cancer cells. Pharmaceutics 12:956.
  • Fresta CG, Fidilio A, Caruso G, et al. (2020). A new human blood-retinal barrier model based on endothelial cells, pericytes, and astrocytes. Int J Mol Sci 21:16–36.
  • Ghule M, Bhoyar G. (2018). Formulation and evaluation of modified liposome for transdermal drug. J Dev Drugs 7:2–3.
  • Grasso M, Caruso G, Godos J, et al. (2021). Improving cognition with nutraceuticals targeting TGF-β1 signaling. Antioxidants (Basel) 10:1075.
  • Gupta S, Vyas SP. (2007). Development and characterization of amphotericin b bearing emulsomes for passive and active macrophage targeting. J Drug Target 15:206–17.
  • Harbi I, Aljaeid B, El-Say KM, Zidan AS. (2016). Glycosylated sertraline-loaded liposomes for brain targeting: QbD study of formulation variabilities and brain transport. AAPS PharmSciTech 17:1404–20.
  • Hathout RM, Mansour S, Mortada ND, Guinedi AS. (2007). Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS PharmSciTech 8:1.
  • Hong SS, Oh KT, Choi HG, Lim SJ. (2019). Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics 11:540.
  • Khan AR, Liu M, Khan MW, Zhai G. (2017). Progress in brain targeting drug delivery system by nasal route. J Control Release 268:364–89.
  • Lin T, Zhao P, Jiang Y, et al. (2016). Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano 10:9999–10012.
  • Lindgren M, Hällbrink M, Prochiantz A, Langel U. (2000). Cell-penetrating peptides. Trends Pharmacol Sci 21:99–103.
  • Liu DZ, Cheng Y, Cai RQ, et al. (2018). The enhancement of siPLK1 penetration across BBB and its anti glioblastoma activity in vivo by magnet and transferrin co-modified nanoparticle. Nanomedicine 14:991–1003.
  • Liu P, Jiang C. (2022). Brain-targeting drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol e1818. doi: 10.1002/wnan.1818.
  • Liu S, Ho PC. (2017). Intranasal administration of brain-targeted hp-β-cd/chitosan nanoparticles for delivery of scutellarin, a compound with protective effect in cerebral ischaemia. J Pharm Pharmacol 69:1495–501.
  • Liu S, Yang S, Ho PC. (2018). Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm Sci 13:72–81.
  • Magarkar A, Dhawan V, Kallinteri P, et al. (2014). Cholesterol level affects surface charge of lipid membranes in saline solution. Sci Rep 4:5005.
  • Mehanna MM, El-Kader NA, Samaha MW. (2017). Liposomes as potential carriers for ketorolac ophthalmic delivery: formulation and stability issues. Braz J Pharm Sci 53:16127.
  • Muppidi K, Pumerantz AS, Wang J, Betageri G. (2012). Development and stability studies of novel liposomal vancomycin formulations. ISRN Pharm 2012:636743.
  • Nageeb El-Helaly S, Abd Elbary A, Kassem MA, El-Nabarawi MA. (2017). Electrosteric stealth rivastigmine loaded liposomes for brain targeting: preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies. Drug Deliv 24:692–700.
  • Narayan R, Singh M, Ranjan O, et al. (2016). Development of risperidone liposomes for brain targeting through intranasal route. Life Sci 163:38–45.
  • Nayak AP, Tiyaboonchai W, Patankar S, et al. (2010). Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. Colloids Surf B Biointerfaces 81:263–73.
  • Ong SG, Ming LC, Lee KS, Yuen KH. (2016). Influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Pharmaceutics 8:25.
  • Ou H, Cheng T, Zhang Y, et al. (2018). Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomater 65:339–48.
  • Pal A, Gupta S, Jaiswal A, et al. (2012). Development and evaluation of tripalmitin emulsomes for the treatment of experimental visceral leishmaniasis. J Liposome Res 22:62–71.
  • Paliwal R, Paliwal SR, Mishra N, et al. (2009). Engineered chylomicron mimicking carrier emulsome for lymph targeted oral delivery of methotrexate. Int J Pharm 380:181–8.
  • Panwar P, Pandey B, Lakhera PC, Singh KP. (2010). Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int J Nanomedicine 5:101–8.
  • Pizzirusso A, Peyronel F, Co ED, et al. (2018). Molecular insights into the eutectic tripalmitin/tristearin binary system. J Am Chem Soc 140:12405–14.
  • Pulgar VM. (2018). Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci 12:1019.
  • Qiao R, Jia Q, Hüwel S, et al. (2012). Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano 6:3304–10.
  • Sadiq AA, Rassol AA. (2014). Formulation and evaluation of silibinin loaded solid lipid nanoparticles for peroral use targeting lower part of gastrointestinal tract. Int J Pharm Pharm Sci 6:55–67.
  • Salem F, Ahammed SM, Hassaballah AS, Omar MM. (2015). Targeting brain cells with glutathione-modulated nanoliposomes: in vitro and in vivo study. DDDT 9:3705–27.
  • Satapathy MK, Yen TL, Jan JS, et al. (2021). Solid lipid nanoparticles (SLNs): an advanced drug delivery system targeting brain through BBB. Pharmaceutics 13:1183.
  • Scalia S, Young PM, Traini D. (2015). Solid lipid microparticles as an approach to drug delivery. Expert Opin Drug Deliv 12:583–99.
  • Seetapan N, Bejrapha P, Srinuanchai W, et al. (2010). Nondestructive rheological measurement of aqueous dispersions of solid lipid nanoparticles: effects of lipid types and concentrations on dispersion consistency. Drug Dev Ind Pharm 36:1005–15.
  • Sudhakar B, Krishna MC, Murthy KVR. (2016). Factorial design studies of antiretroviral drug-loaded stealth liposomal injectable: PEGylation, lyophilization and pharmacokinetic studies. Appl Nanosci 6:43–60.
  • Tang Y, Wang X, Li J, et al. (2019). Overcoming the reticuloendothelial system barrier to drug delivery with a "don’t-eat-us" strategy. ACS Nano 13:13015–26.
  • Tefas LR, Sylvester B, Tomuta I, et al. (2017). Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach. Drug Des Devel Ther 11:1605–21.
  • Thakur KT, Albanese E, Giannakopoulos P, et al. (2016). Neurological disorders. In: Patel V, Chisholm D, Dua T, Laxminarayan R, Medina-Mora ME, eds. Vol. 4, 3rd ed. Washington (DC): The International Bank for Reconstruction and Development/The World Bank© 2016 International Bank for Reconstruction and Development/The World Bank.
  • Tiwari G, Tiwari R, Wal P, Wal A. (2019). Development and optimization of liposomes containing 5 fluorouracil and tretinoin for skin warts: 32 experimental design. FABAD J Pharm Sci 44:17–26.
  • Tsermentseli SK, Kontogiannopoulos KN, Papageorgiou VP, Assimopoulou AN. (2018). Comparative study of pegylated and conventional liposomes as carriers for shikonin. Fluids 3:36.
  • Ucisik MH, Sleytr UB, Schuster B. (2015). Emulsomes meet s-layer proteins: an emerging targeted drug delivery system. Curr Pharm Biotechnol 16:392–405.
  • Upadhyay P, Trivedi J, Pundarikakshudu K, Sheth N. (2017). Direct and enhanced delivery of nanoliposomes of anti schizophrenic agent to the brain through nasal route. Saudi Pharm J 25:346–58.
  • Vieira DB, Gamarra LF. (2016). Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine 11:5381–414.
  • Vijayakumar MR, Kosuru R, Vuddanda PR, et al. (2016). Trans resveratrol loaded DSPE PEG 2000 coated liposomes: an evidence for prolonged systemic circulation and passive brain targeting. J Drug Delivery Sci Technol 33:125–35.
  • Vyas SP, Subhedar R, Jain S. (2010). Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver. J Pharm Pharmacol 58:321–6.
  • Xia HM, Su LN, Guo JW, et al. (2010). Determination of vinpocetine and its primary metabolite, apovincaminic acid, in rat plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878:1959–66.
  • Xie F, Yao N, Qin Y, et al. (2012). Investigation of glucose-modified liposomes using polyethylene glycols with different chain lengths as the linkers for brain targeting. IJN 7:163–75.
  • Zhang YS, Li JD, Yan C. (2018). An update on vinpocetine: new discoveries and clinical implications. Eur J Pharmacol 819:30–4.
  • Zhou X, Chen Z. (2015). Preparation and performance evaluation of emulsomes as a drug delivery system for silybin. Arch Pharm Res 38:2193–200.
  • Zidan AS, Aldawsari H. (2015). Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood-brain barrier transport investigations. DDDT 9:3885–98.