1,346
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Development and optimization of amphiphilic self-assembly into nanostructured liquid crystals for transdermal delivery of an antidiabetic SGLT2 inhibitor

, ORCID Icon, , &
Pages 3340-3357 | Received 03 Oct 2022, Accepted 01 Nov 2022, Published online: 15 Nov 2022

References

  • Abe S, Takahashi H. (2003). Simultaneous small-angle/wide-angle X-ray scattering and differential scanning calorimetry study of the effects of glycerol on hydrated monoolein. J Appl Crystallogr 36:515–19.
  • Aboofazeli R, Lawrence C, Wicks S, Lawrence M. (1994). Investigations into the formation and characterization of phospholipid microemulsions. III. Pseudo-ternary phase diagrams of systems containing water-lecithin-isopropyl myristate and either an alkanoic acid, amine, alkanediol, polyethylene glycol alkyl ether or alcohol as cosurfactant. Int J Pharm 111:63–72.
  • Ansari M, Kazemipour M, Aklamli M. (2006). The study of drug permeation through natural membranes. Int J Pharm 327:6–11.
  • Bakshi MS. (2016). How surfactants control crystal growth of nanomaterials. Cryst Growth Des 16:1104–33.
  • Berni M, Lawrence C, Machin D. (2002). A review of the rheology of the lamellar phase in surfactant systems. Adv Colloid Interface Sci 98:217–43.
  • Blaak J, Wohlfart R, Schürer NY. (2011). Treatment of aged skin with a pH 4 skin care product normalizes increased skin surface pH and improves barrier function: results of a pilot study. J Cosmet Dermatol Sci Appl 1:50–8.
  • Bodratti AM, Alexandridis P. (2018). Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opin Drug Deliv 15:1085–104.
  • Boyd BJ, Whittaker DV, Khoo S-M, Davey G. (2006). Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm 309:218–26.
  • Callender SP, Mathews JA, Kobernyk K, Wettig SD. (2017). Microemulsion utility in pharmaceuticals: implications for multi-drug delivery. Int J Pharm 526:425–42.
  • Carrer V, Alonso C, Pont M, et al. (2020). Effect of propylene glycol on the skin penetration of drugs. Arch Dermatol Res 312:337–52.
  • Chen H, Mou D, Du D, et al. (2007). Hydrogel-thickened microemulsion for topical administration of drug molecule at an extremely low concentration. Int J Pharm 341:78–84.
  • Chen Y, Angelova A, Angelov B, et al. (2015). Sterically stabilized spongosomes for multidrug delivery of anticancer nanomedicines. J Mater Chem B 3:7734–44.
  • Chen Y, Ma P, Gui S. (2014). Cubic and hexagonal liquid crystals as drug delivery systems. Biomed Res Int 2014:815981.
  • Chountoulesi M, Pispas S, Tseti IK, Demetzos C. (2022). Lyotropic liquid crystalline nanostructures as drug delivery systems and vaccine platforms. Pharmaceuticals 15:429.
  • Devineni D, Polidori D. (2015). Clinical pharmacokinetic, pharmacodynamic, and drug–drug interaction profile of canagliflozin, a sodium-glucose co-transporter 2 inhibitor. Clin Pharmacokinet 54:1027–41.
  • Djekic L, Primorac M. (2008). The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides. Int J Pharm 352:231–9.
  • Dominguez Rieg JA, Rieg T. (2019). What does sodium-glucose co-transporter 1 inhibition add: prospects for dual inhibition. Diabetes Obes Metab 21:43–52.
  • Draize J, Woodard G, Calvery H, et al. (1944). Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 82:377–90.
  • Dutt S, Siril PF, Remita S. (2017). Swollen liquid crystals (SLCs): a versatile template for the synthesis of nano structured materials. RSC Adv 7:5733–50.
  • El-nokaly MA, Ford LD, Friberg SE, Larsen DW. (1981). The structure of lamellar lyotropic liquid crystals from lecithin and alkanediols. J Colloid Interface Sci 84:228–34.
  • Estracanholli ÉA, Praça FSG, Cintra AB, et al. (2014). Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies. AAPS PharmSciTech 15:1468–75.
  • Faillie J-L. (2017). Pharmacological aspects of the safety of gliflozins. Pharmacol Res 118:71–81.
  • Finnin B, Walters KA, Franz TJ. (2012). In vitro skin permeation methodology. In: Benson HAE, Watkinson AC, eds. Transdermal and topical drug delivery: principles and practice. Hoboken, New Jersey: Wiley, 85–108.
  • Fong C, Le T, Drummond CJ. (2012). Lyotropic liquid crystal engineering–ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem Soc Rev 41:1297–322.
  • Furman BL. (2021). Streptozotocin-induced diabetic models in mice and rats. Curr Protoc 1:e78.
  • Garti N, Somasundaran P, Mezzenga R. (2012). Self-assembled supramolecular architectures: lyotropic liquid crystals. vol. 396. Hoboken, New Jersey: Wiley.
  • Garti N, Hoshen G, Aserin A. (2012). Lipolysis and structure controlled drug release from reversed hexagonal mesophase. Colloids Surf B Biointerfaces 94:36–43.
  • Guo C, J, Wang F, Cao, et al. (2010). Lyotropic liquid crystal systems in drug delivery. Drug Discov Today 15:1032–40.
  • Haigh JM, Smith EW. (1994). The selection and use of natural and synthetic membranes for in vitro diffusion experiments. Eur J Pharm Sci 2:311–30.
  • Hamilton R. (1986). The microstructure of the hen’s egg shell – a short review. Food Struct 5:13.
  • Hsia DS, Grove O, Cefalu WT. (2017). An update on SGLT2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 24:73–9.
  • Huang Y, Gui S. (2018). Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC Adv 8:6978–87.
  • Imura T, Hikosaka Y, Worakitkanchanakul W, et al. (2007). Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases. Langmuir 23:1659–63.
  • Israelachvili JN, Mitchell DJ, Ninham BW. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2 72:1525–68.
  • Ivanova R, Lindman B, Alexandridis P. (2001). Modification of the lyotropic liquid crystalline microstructure of amphiphilic block copolymers in the presence of cosolvents. Adv Colloid Interface Sci 89:351–82.
  • Ivanova R, Lindman B, Alexandridis P. (2002). Effect of pharmaceutically acceptable glycols on the stability of the liquid crystalline gels formed by poloxamer 407 in water. J Colloid Interface Sci 252:226–35.
  • Jeong WY, Kwon M, Choi HE, Kim KS. (2021). Recent advances in transdermal drug delivery systems: a review. Biomater Res 25:24.
  • Kahlweit M, Strey R. (1985). Phase behavior of ternary systems of the type H2O-oil-nonionic amphiphile (microemulsions). Angew Chem Int Ed Engl 24:654–68.
  • Karande P, Mitragotri S. (2009). Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim Biophys Acta 1788:2362–73.
  • Kim D-H, Jahn A, Cho S-J, et al. (2015). Lyotropic liquid crystal systems in drug delivery: a review. Drug Discov Today 45:1–11.
  • Kováčik A, Kopečná M, Vávrová K. (2020). Permeation enhancers in transdermal drug delivery: Benefits and limitations. Expert Opin Drug Deliv 17:145–55.
  • Kulkarni CV, Wachter W, Iglesias-Salto G, et al. (2011). Monoolein: a magic lipid? Phys Chem Chem Phys 13:3004–21.
  • Landh T. (1994). Phase behavior in the system pine needle oil monoglycerides-Poloxamer 407-water at 20. degree. J Phys Chem 98:8453–67.
  • Lau WM, Ng KW. (2017). Finite and infinite dosing. In: Dragicevic N, Maibach HI, eds. Percutaneous penetration enhancers drug penetration into/through the skin. Berlin, Germany: Springer, 35–44.
  • Lawrence MJ, Rees GD. (2000). Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45:89–121.
  • Lehman PA. (2014). A simplified approach for estimating skin permeation parameters from in vitro finite dose absorption studies. J Pharm Sci 103:4048–57.
  • Lim DG, Jeong W-W, Kim NA, et al. (2014). Effect of the glyceryl monooleate-based lyotropic phases on skin permeation using in vitro diffusion and skin imaging. Asian J Pharm Sci 9:324–9.
  • Livolant F, Bouligand Y. (1986). Liquid crystalline phases given by helical biological polymers (DNA, PBLG and xanthan). Columnar textures. J Phys France 47:1813–27.
  • Lv F-F, Zheng L-Q, Tung C-H. (2005). Phase behavior of the microemulsions and the stability of the chloramphenicol in the microemulsion-based ocular drug delivery system. Int J Pharm 301:237–46.
  • McCrimmon RJ, Henry RR. (2018). SGLT inhibitor adjunct therapy in type 1 diabetes. Diabetologia 61:2126–33.
  • Mezzenga R, Meyer C, Servais C, et al. (2005). Shear rheology of lyotropic liquid crystals: a case study. Langmuir 21:3322–33.
  • Milak S, Zimmer A. (2015). Glycerol monooleate liquid crystalline phases used in drug delivery systems. Int J Pharm 478:569–87.
  • Misquitta Y, Caffrey M. (2001). Rational design of lipid molecular structure: a case study involving the C19: 1c10 monoacylglycerol. Biophys J 81:1047–58.
  • Mitragotri S, Anissimov YG, Bunge AL, et al. (2011). Mathematical models of skin permeability: an overview. Int J Pharm 418:115–29.
  • Mortensen K. (2001). Structural studies of lamellar surfactant systems under shear. Curr Opin Colloid Interface Sci 6:140–5.
  • Mourad MC, Petukhov AV, Vroege GJ, Lekkerkerker HN. (2010). Lyotropic hexagonal columnar liquid crystals of large colloidal gibbsite platelets. Langmuir 26:14182–7.
  • Nauck MA, Meier JJ. (2018). Incretin hormones: their role in health and disease. Diabetes Obes Metab 20:5–21.
  • Negrini R, Mezzenga R. (2012). Diffusion, molecular separation, and drug delivery from lipid mesophases with tunable water channels. Langmuir 28:16455–62.
  • Nespoux J, Vallon V. (2020). Renal effects of SGLT2 inhibitors: an update. Curr Opin Nephrol Hypertens 29:190–8.
  • Neupane R, Boddu SH, Renukuntla J, et al. (2020). Alternatives to biological skin in permeation studies: current trends and possibilities. Pharmaceutics 12(2):152.
  • Ng LC, Gupta M. (2020). Transdermal drug delivery systems in diabetes management: a review. Asian J Pharm Sci 15:13–25.
  • Nirali D, Darshil B, Dilip G. (2015). Development and validation of UV-spectrophotometric estimation of canagliflozin in its pharmaceutical dosage form. Int J Pharm Technol 7:9779–84.
  • Oguma T, Nakayama K, Kuriyama C, et al. (2015). Intestinal sodium glucose cotransporter 1 inhibition enhances glucagon-like peptide-1 secretion in normal and diabetic rodents. J Pharmacol Exp Ther 354:279–89.
  • Okoduwa SIR, Umar IA, James DB, Inuwa HM. (2017). Appropriate insulin level in selecting fortified diet-fed, streptozotocin-treated rat model of type 2 diabetes for anti-diabetic studies. PLoS One 12:e0170971.
  • Olivella MS, B. Debattista N, B. Pappano N. (2006). Salicylic acid permeation: A comparative study with different vehicles and membranes. Biocell 30:321–4.
  • Padda IS, Mahtani AU, Parmar M. (2022). Sodium-glucose transport protein 2 (SGLT2) inhibitors. Treasure Island (FL): StatPearls Publishing.
  • Patel MP, Gupta M. (2013). Formulation development and evaluation of transdermal patch og anti-diabetic drug pioglitazone. Pharma Innov 2:80–8.
  • Phan S, Fong W-K, Kirby N, et al. (2011). Evaluating the link between self-assembled mesophase structure and drug release. Int J Pharm 421:176–82.
  • Phelps J, Bentley MVL, Lopes LB. (2011). In situ gelling hexagonal phases for sustained release of an anti-addiction drug. Colloids Surf B Biointerfaces 87:391–8.
  • Polidori D, Mari A, Ferrannini E. (2014). Canagliflozin, a sodium glucose co-transporter 2 inhibitor, improves model-based indices of beta cell function in patients with type 2 diabetes. Diabetologia 57:891–901.
  • PubChem. (2021, June 8). Canagliflozin. PubChem Compound Summary for CID 24812758, Canagliflozin. National Center for Biotechnology Information.. Available at https://pubchem.ncbi.nlm.nih.gov/compound/Canagliflozin [last accessed 4 Apr 2022].
  • Rajabalaya R, Musa MN, Kifli N, David SR. (2017). Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals. Drug Des Dev Ther 11:393–406.
  • Rajak P, Nath L, Bhuyan B. (2019). Liquid crystals: an approach in drug delivery. Indian J Pharm Sci 81:11–21.
  • Raspantini GL, MT, Luiz M, Tavares E. Ricci-Junior. (2021). Physicochemical characterization of drug nanocarrriers, in nanocarriers for drug delivery. Switzerland: Springer, 83–105.
  • Reddy A, Feng X, Thomas EL, Grason GM. (2021). Block copolymers beneath the surface: measuring and modeling complex morphology at the subdomain scale. Macromolecules 54(20):9223–57.
  • Ridell A. (2003). Characterisation of aqueous solutions, liquid crystals and solid state of non-ionic polymers in association with amphiphiles and drugs [PhD dissertation]. Uppsala: Universitetsbiblioteket.
  • Rosenthal N, Meininger G, Ways K, et al. (2015). Canagliflozin: a sodium glucose co-transporter 2 inhibitor for the treatment of type 2 diabetes mellitus. Ann N Y Acad Sci 1358:28–43.
  • Saadat Y, Imran OQ, Osuji CO, Foudazi R. (2021). Lyotropic liquid crystals as templates for advanced materials. J Mater Chem A 9:21607–58.
  • Sagalowicz L, Mezzenga R, Leser ME. (2006). Investigating reversed liquid crystalline mesophases. Curr Opin Colloid Interface Sci 11:224–9.
  • Selzer D, Abdel-Mottaleb MM, Hahn T, et al. (2013). Finite and infinite dosing: difficulties in measurements, evaluations and predictions. Adv Drug Deliv Rev 65:278–94.
  • Shah JC, Sadhale Y, Chilukuri DM. (2001). Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev 47:229–50.
  • Silvestrini AVP, Caron AL, Viegas J, et al. (2020). Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opin Drug Deliv 17(12):1781–805.
  • Soltero J, Robles-Vásquez O, Puig J, Manero O. (1995). Note: Thixotropic–antithixotropic behavior of surfactant-based lamellar liquid crystals under shear flows. J Rheol 39:235–40.
  • Song Z, Yang Y, Xin X. (2017). Lyotropic liquid crystals incorporated with different kinds of carbon nanomaterials or biomolecules. In: Choudhury PK, ed. Liquid crystals-recent advancements in fundamental and device technologies. Germany: BoD–Books on Demand, 89–107.
  • Streck L, Sarmento VH, Machado PR, et al. (2016). Phase transitions of isotropic to anisotropic biocompatible lipid-based drug delivery systems overcoming insoluble benznidazole loading. Int J Mol Sci 17:981.
  • Suneethal A, Sharmila D. (2015). A validated stability indicating RP-HPLC method for estimation of canagliflozin in dosage form. Res J Pharm Biol Chem Sci 6:1186–94.
  • Syed HK, Peh KK. (2014). Identification of phases of various oil, surfactant/co-surfactants and water system by ternary phase diagram. Acta Pol Pharm 71:301–9.
  • Tan A, Hong L, Du JD, Boyd BJ. (2019). Self-assembled nanostructured lipid systems: is there a link between structure and cytotoxicity? Adv Sci 6:1801223.
  • Tian L, Cai Y, Zheng H, et al. (2021). Canagliflozin for prevention of cardiovascular and renal outcomes in type2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 12:691878.
  • Tran N, Mulet X, Hawley AM, et al. (2015). Nanostructure and cytotoxicity of self-assembled monoolein–capric acid lyotropic liquid crystalline nanoparticles. RSC Adv 5:26785–95.
  • Triplitt C, Cornell S. (2015). Canagliflozin treatment in patients with type 2 diabetes mellitus. Clin Med Insights Endocrinol Diabetes 8:73–81.
  • Tsimihodimos V, Filippas-Ntekouan S, Elisaf M. (2018). SGLT1 inhibition: pros and cons. Eur J Pharmacol 838:153–6.
  • Tsuneki H, Sugihara Y, Honda R, et al. (2002). Reduction of blood glucose level by orexins in fasting normal and streptozotocin-diabetic mice. Eur J Pharmacol 448:245–52.
  • Türeli NG, Türeli AE. (2020). Upscaling and GMP production of pharmaceutical drug delivery systems. In: Shegokar R, ed. Drug delivery trends. Netherland: Elsevier, 215–29.
  • Vaduganathan M, Sattar N, Xu J, et al. (2022). Stress cardiac biomarkers, cardiovascular and renal outcomes, and response to canagliflozin. J Am Coll Cardiol 79:432–44.
  • Vallon V, Verma S. (2021). Effects of SGLT2 inhibitors on kidney and cardiovascular function. Annu Rev Physiol 83:503–28.
  • Vallooran JJ, Negrini R, Mezzenga R. (2013). Controlling anisotropic drug diffusion in lipid-Fe3O4 nanoparticle hybrid mesophases by magnetic alignment. Langmuir 29:999–1004.
  • van’t Hag L, Gras SL, Conn CE, Drummond CJ. (2017). Lyotropic liquid crystal engineering moving beyond binary compositional space–ordered nanostructured amphiphile self-assembly materials by design. Chem Soc Rev 46:2705–31.
  • Voelker-Pop L. (2014). Optical methods in rheology: polarized light imaging. Chemicke Listy 108:707–10.
  • Yhirayha C, Soontaranon S, Wittaya S, et al. (2014). Formulation of lyotropic liquid crystal containing mulberry stem extract: influences of formulation ingredients on the formation and the nanostructure. Int J Cosmet Sci 36:213–20.
  • Zhu Y, Kang Y, Zhu L, et al. (2021). Investigation of solubility behavior of canagliflozin hydrate crystals combining crystallographic and Hirshfeld surface calculations. Molecules 26:298.