854
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Multi-functional chitosan copolymer modified nanocrystals as oral andrographolide delivery systems for enhanced bioavailability and anti-inflammatory efficacy

, , , , , , , & show all
Pages 3432-3442 | Received 26 Aug 2022, Accepted 15 Nov 2022, Published online: 29 Nov 2022

References

  • Ahuja BK, Jena SK, Paidi SK, et al. (2015). Formulation, optimization and in vitro–in vivo evaluation of febuxostat nanosuspension. Int J Pharm 478:540–52.
  • Basu A, Guti S, Kundu S, et al. (2020). Oral andrographolide nanocrystals protect liver from paracetamol induced injury in mice. J Drug Deliv Sci Tech 55:101406.
  • Bezrodnykh EA, Antonov YA, Berezin BB, et al. (2021). Molecular features of the interaction and antimicrobial activity of chitosan in a solution containing sodium dodecyl sulfate. Carbohydr Polym 270:118352.
  • Casamonti M, Risaliti L, Vanti G, et al. (2019). Andrographolide loaded in micro-and nano-formulations: improved bioavailability, target-tissue distribution, and efficacy of the “king of bitters”. Engineering 5:69–75.
  • Chellampillai B, Pawar AP. (2011). Improved bioavailability of orally administered andrographolide from pH-sensitive nanoparticles. Eur J Drug Metab Pharmacokinet 35:123–9.
  • Chen HW, Huang CS, Li CC, et al. (2014). Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats. Toxicol Appl Pharmacol 280:1–9.
  • Chen TE, Tu L, Wang G, et al. (2020). Multi-functional chitosan polymeric micelles as oral paclitaxel delivery systems for enhanced bioavailability and anti-tumor efficacy. Int J Pharm 578:119105.
  • Chen TE, Wang G, Chen MT, et al. (2018). Preparation of TPGS-chitosan-loaded paclitaxel micelles and in vivo intestinal absorption in rats. Chin Tradit Herbal Drugs 49:5780–6.
  • Chen Y, Gui Y, Luo Y, et al. (2021). Design and evaluation of inhalable nanocrystals embedded microparticles with enhanced redispersibility and bioavailability for breviscapine. Powder Technol 377:128–38.
  • Cheng M, Yuan F, Liu J, et al. (2020). Fabrication of fine puerarin nanocrystals by Box–Behnken Design to enhance intestinal absorption. AAPS PharmSciTech 21:1–12.
  • Frank LA, Contri RV, Beck RCR, et al. (2015). Improving drug biological effects by encapsulation into polymeric nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:623–39.
  • Guan XW, Morris ME. (2019). Pharmacokinetics of the monocarboxylate transporter 1 inhibitor AZD3965 in mice: potential enterohepatic circulation and target-mediated disposition. Pharm Res 37:5.
  • Haeri A, Osouli M, Bayat F, et al. (2018). Nanomedicine approaches for sirolimus delivery: a review of pharmaceutical properties and preclinical studies. Artif Cells Nanomed Biotechnol 46:1–14.
  • He G, Yan X, Miao ZH, et al. (2020). Anti-inflammatory catecholic chitosan hydrogel for rapid surgical trauma healing and subsequent prevention of tumor recurrence. Chin Chem Lett 31:1807–11.
  • Hussain RT, Islam AKMS, Khairuddean M, et al. (2022). A polypyrrole/GO/ZnO nanocomposite modified pencil graphite electrode for the determination of andrographolide in aqueous samples. Alex Eng J 61:4209–18.
  • Imam SS, Aqil M, Akhtar M, et al. (2015). Formulation by design-based proniosome for accentuated transdermal delivery of risperidone: in vitro characterization and in vivo pharmacokinetic study. Drug Deliv 22:1059–70.
  • Kesisoglou F, Panmai S, Wu Y. (2007). Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 59:631–44.
  • Khan I, Khan F, Farooqui A, et al. (2018). Andrographolide exhibits anticancer potential against human colon cancer cells by inducing cell cycle arrest and programmed cell death via augmentation of intracellular reactive oxygen species level. Nutr Cancer 70:787–803.
  • Latif R, Wang CY. (2020). Andrographolide as a potent and promising antiviral agent. Chin J Nat Medicines 18:760–9.
  • Li L, Li S, Jiang J, et al. (2021). Investigating pharmacological mechanisms of andrographolide on non-alcoholic steatohepatitis (NASH): a bioinformatics approach of network pharmacology. Chin Herb Med 13:342–50.
  • Lim JCW, Sagineedu SR, Yong ACH, et al. (2021). Toxicological and pharmacokinetic analysis at therapeutic dose of SRS27, an investigational anti-asthma agent. Naunyn-Schmiedeberg’s Arch Pharmacol 394:95–105.
  • Liu D, Wan B, Qi J, et al. (2018). Permeation into but not across the cornea: bioimaging of intact nanoemulsions and nanosuspensions using aggregation-caused quenching probes. Chin Chem Lett 29:1834–8.
  • Liu JL, Sun YB, Cheng M, et al. (2021). Improving oral bioavailability of luteolin nanocrystals by surface modification of sodium dodecyl sulfate. AAPS PharmSciTech 22:133.
  • Liu JL, Tu L, Cheng M, et al. (2020). Mechanisms for oral absorption enhancement of drugs by nanocrystals. J Drug Deliv Sci Tech 56:101607.
  • Liu Q, Cheng M, Liang J, et al. (2020). Enhancing oral bioavailability by paclitaxel polymeric micelles: Role of transmembrane pathways in the oral absorption. J Biomed Nanotechnol 16:1160–8.
  • Liversidge GG, Conzentino P. (1995). Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharm 125:309–13.
  • Lu Y, Chen Y, Gemeinhart RA, et al. (2015). Developing nanocrystals for cancer treatment. Nanomedicine (Lond.) 10:2537–52.
  • Magar KT, Boafo GF, Zoulikha M, et al. (2023). Metal phenolic network-stabilized nanocrystals of andrographolide to alleviate macrophage-mediated inflammation in-vitro. Chin Chem Lett 34:107453.
  • Marta C, Laura R, Giulia V, et al. (2019). Andrographolide loaded in micro- and nano-formulations: improved bioavailability, target-tissue distribution, and efficacy of the “King of Bitters”. Engineering 5:69–75.
  • Methenitis S, Stergiou I, Antonopoulou S, et al. (2021). Can exercise-induced muscle damage be a good model for the investigation of the anti-inflammatory properties of diet in humans? Biomedicines 9:36.
  • Mohammad IS, Hu HY, Yin LF, He W. (2019). Drug nanocrystals: fabrication methods and promising therapeutic applications. Int J Pharm 562:187–202.
  • Mou DS, Chen HB, Wan JL, et al. (2011). Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int J Pharm 413:237–44.
  • Mu CF, Balakrishnan P, Fu-De C, et al. (2010). The effects of mixed MPEG-PLA/pluronic copolymer micelles on the bioavailability and multidrug resistance of docetaxel. Biomaterials 31:2371–9.
  • Parveen R, Ahmad FJ, Iqbal Z, et al. (2014). Solid lipid nanoparticles of anticancer drug andrographolide: formulation, in vitro and in vivo studies. Drug Dev Ind Pharm 40:1206–12.
  • Qiao Z, Chen LH, Rui TQ, et al. (2017). Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by D-α-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate. Int J Nanomedicine 12:1033–46.
  • Rathod S, Bahadur P, Tiwari S. (2021). Nanocarriers based on vitamin E-TPGS: design principle and molecular insights into improving the efficacy of anticancer drugs. Int J Pharm 592:120045.
  • Song Q, Wang H, Yang J, et al. (2022). A “cluster bomb” oral drug delivery system to sequentially overcome the multiple absorption barriers. Chin Chem Lett 33:1577–83.
  • Tran QTN, Tan DWS, Wong WSF, et al. (2020). From irreversible to reversible covalent inhibitors: harnessing the andrographolide scaffold for anti-inflammatory action. Eur J Med Chem 204:112481.
  • Tu L, Cheng M, Sun Y, et al. (2020). Fabrication of ultra-small nanocrystals by formation of hydrogen bonds: in vitro and in vivo evaluation. Int J Pharm 573:118730.
  • Wang X, Liu J, Dai Z, et al. (2021). Andrographolide improves PCP-induced schizophrenia-like behaviors through blocking interaction between NRF2 and KEAP1. J Pharmacol Sci 147:9–17.
  • Yi YN, Tu LX, Hu KL, et al. (2015). The construction of puerarin nanocrystals and its pharmacokinetic and in vivo–in vitro correlation (IVIVC) studies on beagle dog. Colloids Surf B Biointerfaces 133:164–70.
  • Zafar A, Imam SS, Alruwaili NK, et al. (2021). Development of piperine-loaded solid self-nanoemulsifying drug delivery system: optimization, in-vitro, ex-vivo, and in-vivo evaluation. Nanomaterials 11:2920.
  • Zhao S, Li J, Wang F, et al. (2020). Semi-elastic core-shell nanoparticles enhanced the oral bioavailability of peptide drugs. Chin Chem Lett 31:1147–52.
  • Zhang H, Li S, Si Y, et al. (2021). Andrographolide and its derivatives: current achievements and future perspectives. Eur J Med Chem 224:113710.
  • Zhang JM, Li YB, Gao W, et al. (2014). Andrographolide-loaded PLGA-PEG-PLGA micelles to improve its bioavailability and anticancer efficacy. Expert Opin Drug Deliv 11:1367–80.
  • Zou LH, Ding WY, Huang QY, et al. (2022). Andrographolide/phospholipid/cyclodextrin complex-loaded nanoemulsion: preparation, optimization, in vitro and in vivo evaluation. Biol Pharm Bull 45:1106–15.
  • Zoya I, He HS, Wang LT, et al. (2021). The intragastrointestinal fate of paclitaxel-loaded micelles: Implications on oral drug delivery. Chin Chem Lett 32:1545–9.