134
Views
0
CrossRef citations to date
0
Altmetric
Articles

Improving the antioxidant and anti-tyrosinase activities of Stemonae Radix by solid-state fermentation with Mucor circinelloides T2-12

, , , , , & show all

References

  • Chinese Pharmacopoeia Committee. Chinese Pharmacopoeia. China Medical Science Press: Beijing, China, 2015.
  • Pilli, R. A.; Rosso, G. B.; de Oliveira, M. C. F. The Chemistry of Stemona Alkaloids: An Update. Nat. Prod. Rep. 2010, 27, 1908–1937. DOI: 10.1039/c005018k.
  • Pilli, R. A.; de Oliveira, M. C. F. Recent Progress in the Chemistry of the Stemona Alkaloids. Nat. Prod. Rep. 2000, 17, 117–127. DOI: 10.1039/a902437i.
  • Wu, Y.; Ou, L.; Han, D.; Tong, Y.; Zhang, M.; Xu, X.; Zhang, C. Pharmacokinetics, Biodistribution and Excretion Studies of Neotuberostemonine, a Major Bioactive Alkaloid of Stemona Tuberosa. Fitoterapia 2016, 112, 22–29. DOI: 10.1016/j.fitote.2016.05.003.
  • Dong, J.-L.; Yang, Z.-D.; Zhou, S.-Y.; Yu, H.-T.; Yao, X.-J.; Xue, H.-Y.; Shu, Z.-M. Two Stemona Alkaloids from Stemona sessilifolia (Miq.) Miq. Phytochem. Lett. 2017, 19, 259–262. DOI: 10.1016/j.phytol.2017.01.016.
  • Phuong, N. T. M.; Cuong, T. T.; Quang, D. N. Anti-Inflammatory Activity of Methyl Ferulate Isolated from Stemona tuberosa Lour. Asian Pac. J. Trop. Med. 2014, 7, S327–S331. DOI: 10.1016/S1995-7645(14)60254-6.
  • Brem, B.; Seger, C.; Pacher, T.; Hartl, M.; Hadacek, F.; Hofer, O.; Vajrodaya, S.; Greger, H. Antioxidant Dehydrotocopherols as a New Chemical Character of Stemona Species. Phytochemistry 2004, 65, 2719–2729. DOI: 10.1016/j.phytochem.2004.08.023.
  • Fang, L.; Song, X.-Q.; He, T.-T.; Zhu, K.-K.; Yu, J.-H.; Song, J.-T.; Zhou, J.; Zhang, H. Two New Polyketides from the Roots of Stemona tuberosa. Fitoterapia 2018, 129, 150–153. DOI: 10.1016/j.fitote.2018.06.025.
  • Xu, Y.-T.; Hon, P.-M.; Jiang, R.-W.; Cheng, L.; Li, S.-H.; Chan, Y.-P.; Xu, H.-X.; Shaw, P.-C.; But, P. P.-H. Antitussive Effects of Stemona tuberosa with Different Chemical Profiles. J. Ethnopharmacol. 2006, 108, 46–53. DOI: 10.1016/j.jep.2006.04.022.
  • Yang, X.-Z.; Zhu, J.-Y.; Tang, C.-P.; Ke, C.-Q.; Lin, G.; Cheng, T.-Y.; Rudd, J.; Ye, Y. Alkaloids from Roots of Stemona sessilifolia and Their Antitussive Activities. Planta Med. 2009, 75, 174–177.
  • Greger, H. Structural Relationships, Distribution and Biological Activities of Stemona Alkaloids. Planta Med. 2006, 72, 99–113. DOI: 10.1055/s-2005-916258.
  • Brem, B.; Seger, C.; Pacher, T.; Hofer, O.; Vajrodaya, S.; Greger, H. Feeding Deterrence and Contact Toxicity of Stemona Alkaloids – A Source of Potent Natural Insecticides. J. Agric. Food Chem. 2002, 50, 6383–6388. DOI: 10.1021/jf0205615.
  • Kaltenegger, E.; Brem, B.; Mereiter, K.; Kalchhauser, H.; Kählig, H.; Hofer, O.; Vajrodaya, S.; Greger, H. Insecticidal Pyrido[1,2-a]Azepine Alkaloids and Related Derivatives from Stemona Species. Phytochemistry 2003, 63, 803–816. DOI: 10.1016/S0031-9422(03)00332-7.
  • Liu, Z.; Tang, Y.; Zhou, R.; Shi, X.; Zhang, H.; Liu, T.; Lian, Z.; Shi, X. Bi-Directional Solid Fermentation Products of Trametes robiniophila Murr with Radix Isatidis Inhibit Proliferation and Metastasis of Breast Cancer Cells. J. Chin. Med. Assoc. 2018, 81, 520–530. DOI: 10.1016/j.jcma.2017.12.003.
  • Torres-León, C.; Ramírez-Guzmán, N.; Ascacio-Valdés, J.; Serna-Cock, L.; dos Santos Correia, M. T.; Contreras-Esquivel, J. C.; Aguilar, C. N. Solid-State Fermentation with Aspergillus niger to Enhance the Phenolic Contents and Antioxidative Activity of Mexican Mango Seed: A Promising Source of Natural Antioxidants. LWT – Food Sci. Technol. 2019, 112, 108236. DOI: 10.1016/j.lwt.2019.06.003.
  • Wang, X.; Tian, X.; Wu, Y.; Shen, X.; Yang, S.; Chen, S. Enhanced Doxorubicin Production by Streptomyces peucetius Using a Combination of Classical Strain Mutation and Medium Optimization. Prep. Biochem. Biotechnol. 2018, 48, 514–521.
  • Wang, G.-H.; Lin, Y.-M.; Kuo, J.-T.; Lin, C.-P.; Chang, C.-F.; Hsieh, M.-C.; Cheng, C.-Y.; Chung, Y.-C. Comparison of Biofunctional Activity of Asparagus cochinchinensis (Lour.) Merr. Extract before and after Fermentation with Aspergillus oryzae. J. Biosci. Bioeng. 2019, 127, 59–65. DOI: 10.1016/j.jbiosc.2018.06.015.
  • Khusro, A.; Aarti, C.; Barbabosa-Pilego, A.; Rojas Hernández, S. Anti-Pathogenic, Antibiofilm, and Technological Properties of Fermented Food Associated Staphylococcus succinus Strain AAS2. Prep. Biochem. Biotechnol. 2019, 49, 176–183. DOI: 10.1080/10826068.2019.1566149.
  • Xing, Y.; Cai, L.; Yin, T.-p.; Chen, Y.; Yu, J.; Wang, Y.-r.; Ding, Z.-t. Improving the Antioxidant Activity and Enriching Salvianolic Acids by the Fermentation of Salvia miltiorrhizae with Geomyces luteus. J. Zhejiang Univ. Sci. B. 2016, 17, 391–398. DOI: 10.1631/jzus.B1500264.
  • Park, E.-H.; Bae, W.-Y.; Eom, S.-J.; Kim, K.-T.; Paik, H.-D. Improved Antioxidative and Cytotoxic Activities of Chamomile (Matricaria chamomilla) Florets Fermented by Lactobacillus plantarum KCCM 11613P. J. Zhejiang Univ. Sci. B. 2017, 18, 152–160. DOI: 10.1631/jzus.B1600063.
  • Abd Razak, D. L.; Jamaluddin, A.; Rashid, N. Y. A.; Ghani, A. A.; Manan, M. A. Assessment of Fermented Broken Rice Extracts for Their Potential as Functional Ingredients in Cosmeceutical Products. Ann. Agric. Sci. In Press. DOI: 10.1016/j.aoas.2019.11.003.
  • Razak, D. L. A.; Rashid, N. Y. A.; Jamaluddin, A.; Ghani, A. A.; Mansor, A.; Manan, M. A. Brewer’s rice – A Potential Substrate for Cosmeceutical Bio-Ingredient Production by Solid State Fermentation Using Aspergillus oryzae. Malays. J. Microbiol. 2019, 15(4), 160–166. DOI: 10.21161/mjm.191541.
  • Tai, Z.; Cai, L.; Dai, L.; Dong, L.; Wang, M.; Yang, Y.; Cao, Q.; Ding, Z. Antioxidant Activity and Chemical Constituents of Edible Flower of Sophora viciifolia. Food Chem. 2011, 126, 1648–1654. DOI: 10.1016/j.foodchem.2010.12.048.
  • Masum, M. N.; Choodej, S.; Yamauchi, K.; Mitsunaga, T. Isolation of Phenylpropanoid Sucrose Esters from the Roots of Persicaria orientalis and Their Potential as Inhibitors of Melanogenesis. Med. Chem. Res. 2019, 28, 623–632. DOI: 10.1007/s00044-019-02312-w.
  • Dong, J.; Zhao, L.; Cai, L.; Fang, H.; Chen, X.; Ding, Z. Antioxidant Activities and Phenolics of Fermented Bletilla formosana with Eight Plant Pathogen Fungi. J. Biosci. Bioeng. 2014, 118, 396–399. DOI: 10.1016/j.jbiosc.2014.03.003.
  • Cardenia, V.; Rodriguez-Estrada, M. T.; Boselli, E.; Lercker, G. Cholesterol Photosensitized Oxidation in Food and Biological Systems. Biochimie 2013, 95, 473–481. DOI: 10.1016/j.biochi.2012.07.012.
  • Agarwal, S.; Sohal, R. S. Relationship between Susceptibility to Protein Oxidation, Aging, and Maximum Life Span Potential of Different Species. Exp. Gerontol. 1996, 31, 365–372. DOI: 10.1016/0531-5565(95)02039-X.
  • Stadtman, E. R. Protein Oxidation and Aging. Science 1992, 257, 1220–1224. DOI: 10.1126/science.1355616.
  • Frei, B. Cardiovascular Disease and Nutrient Antioxidants: Role of Low‐Density Lipoprotein Oxidation. Crit. Rev. Food Sci. Nutr. 1995, 35, 83–98. DOI: 10.1080/10408399509527689.
  • Hur, S. J.; Park, G. B.; Joo, S. T. Formation of Cholesterol Oxidation Products (COPs) in Animal Products. Food Contr. 2007, 18, 939–947. DOI: 10.1016/j.foodcont.2006.05.008.
  • Paniangvait, P.; King, A. J.; Jones, A. D.; German, B. G. Cholesterol Oxides in Foods of Animal Origin. J. Food Sci. 1995, 60, 1159–1174. DOI: 10.1111/j.1365-2621.1995.tb04548.x.
  • Bei, Q.; Liu, Y.; Wang, L.; Chen, G.; Wu, Z. Improving Free, Conjugated, and Bound Phenolic Fractions in Fermented Oats (Avena sativa L.) with Monascus anka and Their Antioxidant Activity. J. Funct. Foods 2017, 32, 185–194. DOI: 10.1016/j.jff.2017.02.028.
  • Zhang, B.; et al. Solid-State Fermentation with Eurotium cristatum HC-18 to Improve Antioxidant Activity of Kudzu (Pueraria lobata) Root. J. Food Nutr. Res. 2018, 57, 384–395.
  • Dorman, H. J. D.; Peltoketo, A.; Hiltunen, R.; Tikkanen, M. J. Characterisation of the Antioxidant Properties of Deodourised Aqueous Extracts from Selected Lamiaceae Herbs. Food Chem. 2003, 83, 255–262. DOI: 10.1016/S0308-8146(03)00088-8.
  • Stefania, B.; Emanuela, C.; Mauro, P. Chemical and Instrumental Approaches to Treat Hyperpigmentation. Pigm. Cell Melanoma Res. 2010, 16, 101–110.
  • Zolghadri, S.; Bahrami, A.; Hassan Khan, M. T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A. A. A Comprehensive Review on Tyrosinase Inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 279–309. DOI: 10.1080/14756366.2018.1545767.
  • Wu, L.; Chen, C.; Cheng, C.; Dai, H.; Ai, Y.; Lin, C.; Chung, Y. Evaluation of Tyrosinase Inhibitory, Antioxidant, Antimicrobial, and Antiaging Activities of Magnolia Officinalis Extracts after Aspergillus niger Fermentation. BioMed. Res. Int. 2018, 2018, 1–11. DOI: 10.1155/2018/5201786.
  • Lee, S. Y.; Baek, N.; Nam, T. G. Natural, Semisynthetic and Synthetic Tyrosinase Inhibitors. J. Enzyme Inhib. Med. Chem. 2016, 31, 1–13. DOI: 10.3109/14756366.2015.1004058.
  • Dong, J.-W.; Cai, L.; Xiong, J.; Chen, X.-H.; Wang, W.-Y.; Shen, N.; Liu, B.-L.; Ding, Z.-T. Improving the Antioxidant and Antibacterial Activities of Fermented Bletilla Striata with Fusarium Avenaceum and Fusarium oxysporum. Process Biochem. 2015, 50, 8–13. DOI: 10.1016/j.procbio.2014.09.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.