160
Views
1
CrossRef citations to date
0
Altmetric
Articles

Mixing of Prosopis africana pods and corn cob exerts contrasting effects on the production and quality of Bacillus thuringiensis crude endoglucanase

, ORCID Icon &

References

  • Marques, G. L.; dos Santos Reis, N.; Silva, T. P.; Ferreira, M. L. O.; Aguiar-Oliveira, E.; de Oliveira, J. R.; Franco, M. Production and Characterisation of Xylanase and Endoglucanases Produced by Penicillium Roqueforti ATCC 10110 through the Solid-State Fermentation of Rice Husk Residue. Waste Biomass Valor. 2018, 9, 2061–2069.
  • Resch, M. G.; Donohoe, B. S.; Baker, J. O.; Decker, S. R.; Bayer, E. A.; Beckham, G. T.; Himmel, M. E. Fungal Cellulases and Complexed Cellulosomal Enzymes Exhibit Synergistic Mechanisms in Cellulose Deconstruction. Energy Environ. Sci. 2013, 6, 1858–1867.
  • Maki, M.; Leung, K. T.; Qin, W. The Prospects of Cellulase-Producing Bacteria for the Bioconversion of Lignocellulosic Biomass. Int. J. Biol. Sci. 2009, 5, 500–516.
  • Sahin, S.; Ozmen, I.; Bıyık, H. Industrial Applications of Endoglucanase Obtained from Novel and Native Trichoderma Atroviride. Chem. Biochem. Eng. Q. 2016, 30, 265–278.
  • Wang, M.; Du, J.; Zhang, D.; Li, X.; Zhao, J. Modification of Different Pulps by Homologous Overexpression Alkali-Tolerant Endoglucanase in Bacillus subtilis Y106. Sci. Rep. 2017, 7, 3321.
  • Deng, T.; Lu, L.; Gao, S.; Lin, Y.; Han, S. Endoglucanase Enzymatic Modification of Kraft Pulp during Recycling. Biotechnol. Lett. 2016, 38, 1139–1145.
  • Adıgüzel, A. O.; Tunçer, M. Production, Purification, Characterization and Usage of a Detergent Additive of Endoglucanase from Isolated Halotolerant Amycolatopsis Cihanbeyliensis Mutated Strain Mut43. Biocatal. Biotransform. 2017, 35, 197–204.
  • Klein-Marcuschamer, D.; Oleskowicz-Popiel, P.; Simmons, B. A.; Blanch, H. W. The Challenge of Enzyme Cost in the Production of Lignocellulosic Biofuels. Biotechnol. Bioeng. 2012, 109, 1083–1087.
  • Zhuang, J.; Marchant, M. A.; Nokes, S. E.; Strobel, H. J. Economic Analysis of Cellulase Production Methods for Bio-Ethanol. Appl. Eng. Agric. 2007, 23, 679–687.
  • Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol; National Renewable Energy Laboratory: Golden, CO, 2011; 147 pp.
  • Johnson, E. Integrated Enzyme Production Lowers the Cost of Cellulosic Ethanol. Biofuels. Bioprod. Bioref. 2016, 10, 164–174.
  • de Oliveira Gorgulho Silva, C.; Filho, E. X. F. A Review of Holocellulase Production Using Pretreated Lignocellulosic Substrates. Bioenerg. Res. 2017, 10, 592–602.
  • Delabona, P. S.; Pirota, R. D. P. B.; Codima, C. A.; Tremacoldi, C. R.; Rodrigues, A.; Farinas, C. S. Using Amazon Forest Fungi and Agricultural Residues as a Strategy to Produce Cellulolytic Enzymes. Biomass Bioenergy 2012, 37, 243–250.
  • Salihu, A.; Abbas, O.; Sallau, A.; Alam, M. Z. Agricultural Residues for Cellulolytic Enzyme Production by Aspergillus niger: Effects of Pretreatment. 3 Biotech. 2015, 5, 1101–1106.
  • Saliu, B. K.; Sani, A. Bioethanol Potentials of Corn Cob Hydrolysed Using Cellulases of Aspergillus niger and Penicillium decumbens. Excli. J. 2012, 11, 468–479.
  • Oke, M. A.; Annuar, M. S. M.; Simarani, K. Mixed Feedstock Approach to Lignocellulosic Ethanol Production—Prospects and Limitations. Bioenerg. Res. 2016, 9, 1189–1203.
  • Vera, R. M.; Bura, R.; Gustafson, R. Synergistic Effects of Mixing Hybrid Poplar and Wheat Straw Biomass for Bioconversion Processes. Biotechnol. Biofuels 2015, 8, 1–10.
  • Oke, M. A.; Annuar, M. S. M.; Simarani, K. Enhanced Endoglucanase Production by Bacillus aerius on Mixed Lignocellulosic Substrates. BioResources 2016, 11, 5854–5869.
  • Dogaris, I.; Vakontios, G.; Kalogeris, E.; Mamma, D.; Kekos, D. Induction of Cellulases and Hemicellulases from Neurospora crassa under Solid-State Cultivation for Bioconversion of Sorghum Bagasse into Ethanol. Ind. Crops Prod. 2009, 29, 404–411.
  • Kazeem, M. O.; Shah, U. K. M.; Baharuddin, A. S.; AbdulRahman, N. A. Prospecting Agro-Waste Cocktail: Supplementation for Cellulase Production by a Newly Isolated Thermophilic B. licheniformis 2D55. Appl. Biochem. Biotechnol. 2017, 182, 1318–1340.
  • Kazeem, M. O.; Shah, U. K. M.; Baharuddin, A. S.; Abdul Rahman, N. A. Enhanced Cellulase Production by a Novel Thermophilic Bacillus licheniformis 2D55: Characterization and Application in Lignocellulosic Saccharification. BioResources 2016, 11, 5404–5423.
  • Lau, M. W.; Bals, B. D.; Chundawat, S. P. S.; Jin, M.; Gunawan, C.; Balan, V.; Jones, A. D.; Dale, B. E. An Integrated Paradigm for Cellulosic Biorefineries: Utilization of Lignocellulosic Biomass as Self-Sufficient Feedstocks for Fuel, Food Precursors and Saccharolytic Enzyme Production. Energy Environ. Sci. 2012, 5, 7100–7110.
  • Rodriguez-Zuniga, U. F.; Bertucci Neto, V.; Couri, S.; Crestana, S.; Farinas, C. S. Use of Spectroscopic and Imaging Techniques to Evaluate Pretreated Sugarcane Bagasse as a Substrate for Cellulase Production under Solid-State Fermentation. Appl. Biochem. Biotechnol. 2014, 172, 2348–2362.
  • Oke, M. A.; Ishola, M. M.; Taherzadeh, M. J.; Mohamad Annuar, M. S.; Simarani, K. Effects of Pretreatment of Single and Mixed Lignocellulosic Substrates on Production of Endoglucanase by Bacillus aerius S5.2. BioResources 2016, 11, 6708–6726.
  • Rahnama, N.; Mamat, S.; Md Shah, U. K.; Ling, F. H.; Abdul Rahman, N. A.; Ariff, A. B. Effect of Alkali Pretreatment of Rice Straw on Cellulase and Xylanase Production by Local Trichoderma harzianum SNRS3 under Solid State Fermentation. BioResources 2013, 8, 2881–2896.
  • Sharma, B.; Agrawal, R.; Singhania, R. R.; Satlewal, A.; Mathur, A.; Tuli, D.; Adsul, M. Untreated Wheat Straw: Potential Source for Diverse Cellulolytic Enzyme Secretion by Penicillium janthinellum EMS-UV-8 Mutant. Bioresour. Technol. 2015, 196, 518–524.
  • Jiang, F.; Ma, L.; Cai, R.; Ma, Q.; Guo, G.; Du, L.; Xiao, D. Efficient Crude Multi-Enzyme Produced by Trichoderma reesei Using Corncob for Hydrolysis of Lignocellulose. 3 Biotech. 2017, 7, 339.
  • Bhalla, A.; Bansal, N.; Kumar, S.; Bischoff, K. M.; Sani, R. K. Improved Lignocellulose Conversion to Biofuels with Thermophilic Bacteria and Thermostable Enzymes. Bioresour. Technol. 2013, 128, 751–759.
  • Ishola, T. A.; Oni, K. C.; Yahya, A.; Abubakar, M. S. Development and Testing of a Prosopis africana Pod Thresher. Aust. J. Basic Appl. Sci. 2011, 5, 759–767.
  • Pasiecznik, N. M.; Tewari, J. C.; Harsh, L. N.; Felker, P.; Harris, P. J. C.; Cadoret, K.; Cruz, G.; Maldonado, L. J. The Prosopis juliflora - Prosopis pallida Complex: A Monograph. Henry Doubleday Research Association (HDRA): Coventry, UK, 2001.
  • And, A. M.; Alli, I. Composition and Properties of Seeds and Pods of the Tree Legume Prosopis juliflora (DC). J. Sci. Food Agric. 1988, 44, 99–110.
  • Jampala, P.; Tadikamalla, S.; Preethi, M.; Ramanujam, S.; Uppuluri, K. B. Concurrent Production of Cellulase and Xylanase from Trichoderma reesei NCIM 1186: Enhancement of Production by Desirability-Based Multi-Objective Method. 3 Biotech. 2017, 7, 14.
  • Ramin, M.; Alimon, A. R.; Abdullah, N.; Panandam, J. M.; Sijam, K. Isolation and Identification of Three Species of Bacteria from the Termite Coptotermes curvignathus (Holmgren) Present in the Vicinity of University Putra Malaysia. Res. J. Microbiol. 2008, 3, 288–292.
  • Kasana, R. C.; Salwan, R.; Dhar, H.; Dutt, S.; Gulati, A. A Rapid and Easy Method for the Detection of Microbial Cellulases on Agar Plates Using Gram’s Iodine. Curr. Microbiol. 2008, 57, 503–507.
  • Dutra, T. R.; Guimarães, V. M.; Varela, E. M.; Fialho, L. S.; Milagres, A. M. F.; Falkoski, D. L.; Zanuncio, J. C.; Rezende, S. T. A Chrysoporthe cubensis Enzyme Cocktail Produced from a Low-Cost Carbon Source with High Biomass Hydrolysis Efficiency. Sci. Rep. 2017, 7, 3893.
  • Zhao, J.; Shi, P.; Bai, Y.; Huang, H.; Luo, H.; Zhang, H.; Xu, D.; Wang, Y.; Yao, B. A Thermophilic Cellulase Complex from Phialophora sp. G5 Showing High Capacity in Cellulose Hydrolysis. Appl. Biochem. Biotechnol. 2012, 166, 952–960.
  • Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428.
  • Nizamudeen, S.; Bajaj, B. K. A Novel Thermo-Alkalitolerant Endoglucanase Production Using Cost-Effective Agricultural Residues as Substrates by a Newly Isolated Bacillus sp. Food Technol. Biotechnol. 2009, 47, 435–440.
  • Zhang, Y. H. P.; Hong, J.; Ye, X. Cellulase Assays. In Mielenz, J. R. (ed.), Biofuels, Vol. 581; Humana Press: New York, NY, 2009; pp. 213–231.
  • König, H.; Li, L.; Fröhlich, J. The Cellulolytic System of the Termite Gut. Appl. Microbiol. Biotechnol. 2013, 97, 7943–7962.
  • Lin, L.; Kan, X.; Yan, H.; Wang, D. Characterization of Extracellular Cellulose-Degrading Enzymes from Bacillus thuringiensis Strains. Electron. J. Biotechnol. 2012, 15, DOI: 10.2225/vol15-issue3-fulltext-1. http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v15n3-1/1440
  • Cunha, F. M.; Vasconcellos, V. M.; Florencio, C.; Badino, A. C.; Farinas, C. S. On-Site Production of Enzymatic Cocktails Using a Non-Conventional Fermentation Method with Agro-Industrial Residues as Renewable Feedstocks. Waste Biomass Valor. 2017, 8, 517–526.
  • Kang, S.; Park, Y.; Lee, J.; Hong, S.; Kim, S. Production of Cellulases and Hemicellulases by Aspergillus niger KK2 from Lignocellulosic Biomass. Bioresour. Technol. 2004, 91, 153–156.
  • Kilikian, B. V.; Afonso, L. C.; Souza, T. F. C.; Ferreira, R. G.; Pinheiro, I. R. Filamentous Fungi and Media for Cellulase Production in Solid State Cultures. Braz. J. Microbiol. 2014, 45, 279–286.
  • Qi, B.; Yaoa, R.; Yua, Y.; Chena, Y. Influence of Different Ratios of Rice Straw to Wheat Bran on Production of Cellulolytic Enzymes by Trichoderma viride ZY-01 in Solid State Fermentation. Electronic J. Environ. Agricul. Food Chem. 2007, 6, 2341–2349.
  • Shamala, T. R.; Sreekantiah, K. R. Production of Cellulases and d-Xylanase by Some Selected Fungal Isolates. Enzyme Microb. Technol. 1986, 8, 178–182.
  • Scholl, A. L.; Menegol, D.; Pitarelo, A. P.; Fontana, R. C.; Filho, A. Z.; Ramos, L. P.; Dillon, A. J. P.; Camassola, M. Elephant Grass Pretreated by Steam Explosion for Inducing Secretion of Cellulases and Xylanases by Penicillium echinulatum S1M29 Solid-State Cultivation. Ind. Crops Prod. 2015, 77, 97–107.
  • Dhillon, G. S.; Oberoi, H. S.; Kaur, S.; Bansal, S.; Brar, S. K. Value-Addition of Agricultural Wastes for Augmented Cellulase and Xylanase Production through Solid-State Tray Fermentation Employing Mixed-Culture of Fungi. Ind. Crops Prod. 2011, 34, 1160–1167.
  • Rahikainen, J.; Mikander, S.; Marjamaa, K.; Tamminen, T.; Lappas, A.; Viikari, L.; Kruus, K. Inhibition of Enzymatic Hydrolysis by Residual Lignins from Softwood–Study of Enzyme Binding and Inactivation on Lignin-Rich Surface. Biotechnol. Bioeng. 2011, 108, 2823–2834.
  • Zhang, J.; Tang, M.; Viikari, L. Xylans Inhibit Enzymatic Hydrolysis of Lignocellulosic Materials by Cellulases. Bioresour. Technol. 2012, 121, 8–12.
  • Juhász, T.; Szengyel, Z.; Réczey, K.; Siika-Aho, M.; Viikari, L. Characterization of Cellulases and Hemicellulases Produced by Trichoderma reesei on Various Carbon Sources. Process Biochem. 2005, 40, 3519–3525.
  • Kim, S. J.; Joo, J. E.; Jeon, S. D.; Hyeon, J. E.; Kim, S. W.; Um, Y. S.; Han, S. O. Enhanced Thermostability of Mesophilic Endoglucanase Z with a High Catalytic Activity at Active Temperatures. Int. J. Biol. Macromol. 2016, 86, 269–276.
  • Neumann, A. P.; Weimer, P. J.; Suen, G. A Global Analysis of Gene Expression in Fibrobacter succinogenes S85 Grown on Cellulose and Soluble Sugars at Different Growth Rates. Biotechnol. Biofuels 2018, 11, 295.
  • Yennamalli, R. M.; Rader, A. J.; Kenny, A. J.; Wolt, J. D.; Sen, T. Z. Endoglucanases: Insights into Thermostability for Biofuel Applications. Biotechnol. Biofuels 2013, 6, 136–139.
  • Akcapinar, G. B.; Venturini, A.; Martelli, P. L.; Casadio, R.; Sezerman, U. O. Modulating the Thermostability of Endoglucanase I from Trichoderma reesei Using Computational Approaches. Protein Eng. Des. Sel. 2015, 28, 127–135.
  • Vasconcellos, V. M.; Tardioli, P. W.; Giordano, R. L. C.; Farinas, C. S. Production Efficiency versus Thermostability of (Hemi)Cellulolytic Enzymatic Cocktails from Different Cultivation Systems. Process Biochem. 2015, 50, 1701–1709.
  • Cornell, J. A. Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data. 3rd ed.; John Wiley & Sons, Inc.: New York, NY, 2002.
  • Lundstedt, T.; Seifert, E.; Abramo, L.; Thelin, B.; Nyström, Å.; Pettersen, J.; Bergman, R. Experimental Design and Optimization. Chemometr. Intell. Lab. Syst. 1998, 42, 3–40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.