71
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Increased in vitro leishmanicidal activity of octyl gallate loaded poly(methyl methacrylate) nanoparticles

, , , , , & show all
Pages 593-599 | Received 27 Jun 2017, Accepted 09 Nov 2018, Published online: 23 Apr 2019

References

  • Abdcllic acid-phospholipid conjugates, physicochemical characterization and in-vivo evaluation. Pharm Dev Technol. 23:55–66.
  • Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, de Boer M. 2012. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 7(5):e35671.
  • Andréo R, Regasini LO, Petrônio MS, Chiari-Andréo BG, Tansini A, Silva DHS, Regina Maria BC. 2015. Toxicity and loss of mitochondrial membrane potential induced by alkyl gallates in Trypanosoma cruzi. Int Sch Res Not. 2015:1–7.
  • Basu MK, Lala S. 2004. Macrophage specific drug delivery in experimental leishmaniasis. Curr Mol Med. 4:681–689.
  • Carraro TCMM, Khalil NM, Mainardes RM. 2016. Amphotericin B-loaded polymeric nanoparticles: formulation optimization by factorial design. Pharm Dev Technol. 21:140–146.
  • de Carvalho RF, Ribeiro IF, Miranda-Vilela AL, de Souza Filho J, Martins OP, de Oliveira Cintra e Silva D, Tedesco AC, Lacava ZGM, Báo SN, Sampaio RNR. 2013. Leishmanicidal activity of amphotericin B encapsulated in PLGA–DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. Exp Parasitol. 135:217–222. [cited 2013 Sep 3]
  • Choi J, Reipa V, Hitchins VM, Goering PL, Malinauskas RA. 2011. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol Sci. 123:133–143.
  • Costa P, Sousa Lobo JM. 2001. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 13:123–133.
  • Croft S, Yardley V. 2002. Chemotherapy of leishmaniasis. CPD. 8:319–342.
  • Cui Z, Hsu C-H, Mumper RJ. 2003. Physical characterization and macrophage cell uptake of mannan-coated nanoparticles. Drug Dev Ind Pharm. 29:689–700.
  • Feuser PE, Arevalo JMC, Junior EL, Rossi GR, da Silva Trindade E, Rocha MEM, Jacques AV, Ricci-Junior E, Santos-Silva MC, Sayer C, et al. 2016. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid. J Mater Sci Mater Med. 27:185.
  • Feuser PE, Bubniak L. d S, Bodack C. d N, Valério A, Silva MC. d S, Ricci-Júnior E, Sayer C, Araújo PHH. d. 2016. In vitro cytotoxicity of poly(methyl methacrylate) nanoparticles and nanocapsules obtained by miniemulsion polymerization for drug delivery application. J Nanosci Nanotechnol. 16:7669–7676.
  • Fornaguera C, Caldero G, Mitjans M, Vinardell MP, Solans C, Vauthier C. 2015. Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies. Nanoscale. 14;7(14):6045–6058.
  • Guo H, Sun S, Yang Z, Tang X, Wang Y. 2015. Strategies for ribavirin prodrugs and delivery systems for reducing the side-effect hemolysis and enhancing their therapeutic effect. J Control Release. 209:27–36.
  • Gutiérrez V, Seabra AB, Reguera RM, Khandare J, Calderón M. 2016. New approaches from nanomedicine for treating leishmaniasis. Chem Soc Rev. 45:152–168.
  • Haldar AK, Sen P, Roy S. 2011. Use of antimony in the treatment of leishmaniasis: current status and future directions. Mol Biol Int. 2011:1–23.
  • Handler MZ, Patel PA, Kapila R, Al-Qubati Y, Schwartz RA. 2015. Cutaneous and mucocutaneous leishmaniasis: differential diagnosis, diagnosis, histopathology, and management. J Am Acad Dermatol. 73:911–926.
  • He C, Hu Y, Yin L, Tang C, Yin C. 2010. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 31:3657–3666. [cited 2014 Apr 1].
  • Herwaldt BL. 1999. Leishmaniasis. Lancet. 354:1191–1199.
  • Hsu CL, Lo WH, Yen GC. 2007. Gallic acid induces apoptosis in 3T3-L1 pre-adipocytes via a fas- and mitochondrial-mediated pathway. J Agric Food Chem. 55:7359–7365.
  • Jain A, Jain A, Garg NK, Tyagi RK, Singh B, Katare OP, Webster TJ, Soni V. 2015. Surface engineered polymeric nanocarriers mediate the delivery of transferrin–methotrexate conjugates for an improved understanding of brain cancer. Acta Biomater. 24:140–151.
  • Kaye P, Scott P. 2011. Leishmaniasis: complexity at the host–pathogen interface. Nat Rev Micro. 9:604–615.
  • Kumar R, Engwerda C. 2014. Vaccines to prevent leishmaniasis. Clin Trans Immunol. 3:e13.
  • Kumar R, Sahoo GC, Pandey K, Das V, Das P. 2014. Study the effects of PLGA-PEG encapsulated Amphotericin B nanoparticle drug delivery system against Leishmania donovani. Drug Deliv. 22:383–388.
  • Landfester K, Musyanovych A, Maila V. 2010. From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion process. J Polym Sci A Polym Chem. 48:493–515.
  • Lekshmi UMD, Poovi G, Kishore N, Reddy PN. 2010. In vitro characterization and invivo toxicity study of repaglinide loaded poly (methyl methacrylate) nanoparticles. Int J Pharm. 396:194–203.
  • Locatelli C, Leal PC, Yunes R. a, Nunes RJ, Creczynski-Pasa TB. 2009. Gallic acid ester derivatives induce apoptosis and cell adhesion inhibition in melanoma cells: The relationship between free radical generation, glutathione depletion and cell death. Chem Biol Interact. 181:175–184. [cited 2013 Sep 3].
  • Locatelli C, Rosso R, Santos-Silva MC, de Souza C. a, Licínio M. a, Leal P, Bazzo ML, Yunes R. a, Creczynski-Pasa TB. 2008. Ester derivatives of gallic acid with potential toxicity toward L1210 leukemia cells. Bioorg Med Chem. 16:3791–3799.
  • van de Loosdrecht AA, Nennie E, Ossenkoppele GJ, Beelen RHJ, Langenhuijsen MMAC. 1991. Cell mediated cytotoxicity against U 937 cells by human monocytes and macrophages in a modified colorimetric MTT assay. A methodological study. J Immunol Methods. 141:15–22.
  • Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, Nienhaus GU, Musyanovych A, Mailänder V, Landfester K, Simmet T. 2011. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano. 5:1657–1669.
  • de Mattos CB, Argenta DF, Melchiades G. d L, Cordeiro MNS, Tonini ML, Moraes MH, Weber TB, Roman SS, Nunes RJ, Teixeira HF. 2015. Nanoemulsions containing a synthetic chalcone as an alternative for treating cutaneous leshmaniasis: Optimization using a full factorial design. Int J Nanomedicine. 10:5529–5542.
  • Monge-Maillo B, López-Vélez R, Saravolatz LD. 2015. Miltefosine for visceral and cutaneous leishmaniasis: drug characteristics and evidence-based treatment recommendations. Clin Infect Dis. 60:1398–1404.
  • Ohno Y, Fukuda K, Takemura G, Toyota M, Watanabe M, Yasuda N, Xinbin Q, Maruyama R, Akao S, Gotou K, et al. 1999. Induction of apoptosis by gallic acid in lung cancer cells. Anticancer Drugs. 10:845–851.
  • Radoman T, Terzic N, Spasojevic P, Dzunuzovic J, Marinkovic A, Jeremic K, Dzunuzovic E. 2015. Synthesis and characterization of the surface modified titanium dioxide/epoxy nanocomposites. Savr Tehnol. 4:7–15.
  • Ranghar S, Sirohi P, Verma P, Agarwal V. 2014. Nanoparticle-based drug delivery systems: promising approaches against infections. Braz Arch Biol Technol. 57:209–222.
  • dos Reis MBG, Manjolin LC, Maquiaveli CDC, Santos-Filho OA, Da Silva ER. 2013. Inhibition of Leishmania (Leishmania) amazonensis and rat arginases by green tea EGCG, (þ)-catechin and (-)-epicatechin: a comparative structural analysis of enzymeinhibitor interactions. PLoS One. 8(11):e78387.
  • Ribeiro TG, Chávez-Fumagalli M. a, Valadares DG, França JR, Rodrigues LB, Duarte MC, Lage PS, Andrade PHR, Lage DP, Arruda LV, et al. 2014. Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int J Nanomedicine. 9:877–890.
  • Salouti M, Ahangari A. 2014. Nanoparticle based drug delivery systems for treatment of infectious diseases. Brazilian Arch Biol Technol. 57:155–192.
  • Serrano a, Palacios C, Roy G, Cespón C, Villar ML, Nocito M, González-Porqué P. 1998. Derivatives of gallic acid induce apoptosis in tumoral cell lines and inhibit lymphocyte proliferation. Arch Biochem Biophys. 350:49–54.
  • Shang L, Nienhaus K, Nienhaus GU. 2014. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol. 12:5. [cited 2014. Mar 19].
  • Sieuwerts AM, Klijn JGM, Peters HA, Foekens JA. 1995. The MTT tetrazolium salt assay scrutinized: how to use this assay reliably to measure metabolic activity of cell cultures in vitro for the assessment of growth characteristics, IC50-values and cell survival. Clin Chem Lab Med. 33:813–824.
  • Tammela P, Laitinen L, Galkin A, Wennberg T, Heczko R, Vuorela H, Slotte JP, Vuorela P. 2004. Permeability characteristics and membrane affinity of flavonoids and alkyl gallates in Caco-2 cells and in phospholipid vesicles. Arch Biochem Biophys. 425:193–199.
  • Tonini ML. 2013. Desenvolvimento de um teste colorimétrico para triagem da atividade leishmanicida de compostos utilizando leishmania amazonensis expressando a enzima beta-galactosidase. Diss Mestr Apresentada ao Programa Pós-Graduação em Biotecnol e Biociências da Univ Fed St Catarina. 118.
  • Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. 1980. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 26:171–176.
  • Valério A, Feuser PE, Bubniak LDS, Santos-Silva MCD, Araújo PHH. d, Sayer C. 2017. In Vitro biocompatibility and macrophage uptake assays of poly(urea-urethane) nanoparticles obtained by miniemulsion polymerization. J Nanosci Nanotechnol. 17:4955–4960.
  • Wu Y, Ma Q, Song X, Zheng Y, Ren W, Zhang J, Ouyang L, Wu F, He G. 2012. Biocompatible poly(ethylene glycol)-poly(γ-cholesterol-L-glutamate) copolymers: synthesis, characterization, and in vitro studies. J Polym Sci A Polym Chem. 50:4532–4537.
  • Ximenes VF, Lopes MG, Petrônio MS, Regasini LO, Siqueira Silva DH, da Fonseca LM. 2010. Inhibitory effect of gallic acid and its esters on 2,2’-azobis(2-amidinopropane)hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione in erythrocytes. J Agric Food Chem. 58:5355–5362.
  • Yoshioka K, Kataoka T, Hayashi T, Hasegawa M, Ishi Y, Hibasami H. 2000. Induction of apoptosis by gallic acid in human stomach cancer KATO III and colon adenocarcinoma COLO 205 cell lines. Oncol Rep. 7:1221–1223.
  • Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, Ozkan M, Ozkan CS. 2008. Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices. 10:321–328. [cited 2014 Jun].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.