122
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Preparation and physicochemical characterization of binary and ternary ground mixtures of carvedilol with PVP and SLS aimed to improve the drug dissolution

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1115-1124 | Received 29 Sep 2018, Accepted 04 Jul 2019, Published online: 29 Jul 2019

References

  • Al-Hamidi H, Asare-Addo K, Desai S, Kitson M, Nokhodchi A. 2015. The dissolution and solid state behaviours of coground ibuprofen-glucosamine HCl. Drug Dev Ind Pharm. 41:1682–1692.
  • Al-Hamidi H, Edwards AA, Mohammad MA, Nokhodchi A. 2010. Glucosamine HCl as a new carrier for improved dissolution behaviour: effect of grinding. Colloids Surf B: Biointerfaces. 81:96–109.
  • Alizadeh MN, Shayanfar A, Jouyban A. 2018. Solubilization of drugs using sodium lauryl sulfate: experimental data and modeling. J Mol Liq. 268:410–414.
  • Aroso IM, Silva JC, Mano F, Ferreira ASD, Dionísio M, Sá-Nogueira I, Barreiros S, Reis RL, Paiva A, Duarte ARC, et al. 2016. Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. Eur J Pharm Biopharm. 98:57–66.
  • Blagden N, De Matas M, Gavan P, York P. 2007. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 59:617–630.
  • Bolourchian N, Fashami FM, Foroutan SM. 2017. Irbesartan dissolution enhancement using PEG-based solid dispersions: the effect of peg molecular weights. Farmacia. 65:537–544.
  • Chakraborty S, Shukla D, Mishra B, Singh S. 2010. Clinical updates on carvedilol: a first choice β-blocker in the treatment of cardiovascular diseases. Expert Opin Drug Metab Toxicol. 6:237–250.
  • Chono S, Takeda E, Seki T, Morimoto K. 2008. Enhancement of the dissolution rate and gastrointestinal absorption of pranlukast as a model poorly water-soluble drug by grinding with gelatin. Int J Pharm. 347:71–78.
  • de la Torre P, Torrado S, Torrado S. 1999. Preparation, dissolution and characterization of praziquantel solid dispersions. Chem Pharm Bull. 47:1629–1633.
  • Elkordy AA, Essa EA, Dhuppad S, Jammigumpula P. 2012. Liquisolid technique to enhance and to sustain griseofulvin dissolution: effect of choice of non-volatile liquid vehicles. Int J Pharm. 434:122–132.
  • Hirlekar R, Kadam V. 2009. Preparation and characterization of inclusion complexes of carvedilol with methyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem. 63:219–224.
  • Hörter D, Dressman J. 2001. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 46:75–87.
  • Huang Y, Zhao X, Zu Y, Wang L, Deng Y, Wu M, Wang H. 2019. Enhanced solubility and bioavailability of apigenin via preparation of solid dispersions of mesoporous silica nanoparticles. Iran J Pharm Res. 18:168–182.
  • Ibrahim TM, Abdallah MH, El-Megrab NA, El-Nahas HM. 2018. Upgrading of dissolution and anti-hypertensive effect of carvedilol via two combined approaches: self-emulsification and liquisolid techniques. Drug Dev Ind Pharm. 44:873–885.
  • Itoh K, Pongpeerapat A, Tozuka Y, Oguchi T, Yamamoto K. 2003. Nanoparticle formation of poorly water-soluble drugs from ternary ground mixtures with PVP and SDS. Chem Pharm Bull. 51:171–174.
  • Javadzadeh Y, Siahi M, Asnaashari S, Nokhodchi A. 2007. Liquisolid technique as a tool for enhancement of poorly water-soluble drugs and evaluation of their physicochemical properties. Acta Pharm. 57:99–109.
  • Kajdič S, Vrečer F, Kocbek P. 2018. Preparation of poloxamer-based nanofibers for enhanced dissolution of carvedilol. Eur J Pharm Sci. 117:331–340.
  • Kanaze F, Kokkalou E, Niopas I, Georgarakis M, Stergiou A, Bikiaris D. 2006. Dissolution enhancement of flavonoids by solid dispersion in PVP and PEG matrixes: a comparative study. J Appl Polym Sci. 102:460–471.
  • Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. 2011. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 420:1–10.
  • Klein S, Wempe MF, Zoeller T, Buchanan NL, Lambert JL, Ramsey MG, Edgar KJ, Buchanan CM. 2009. Improving glyburide solubility and dissolution by complexation with hydroxybutenyl‐β‐cyclodextrin. J Pharm Pharmacol. 61:23–30.
  • Kürti L, Kukovecz Á, Kozma G, Ambrus R, Deli MA, Szabó-Révész P. 2011. Study of the parameters influencing the co-grinding process for the production of meloxicam nanoparticles. Powder Technol. 212:210–217.
  • Mittapalli S, Mannava MC, Khandavilli UR, Allu S, Nangia A. 2015. Soluble salts and cocrystals of clotrimazole. Cryst Growth Des. 15:2493–2504.
  • Moribe K, Pongpeerapat A, Tozuka Y, Yamamoto K. 2006. Drug nanoparticle formation from drug/HPMC/SDS ternary ground mixtures. Pharmazie. 61:97–101.
  • Moyano M, Broussalis A, Segall A. 2010. Thermal analysis of lipoic acid and evaluation of the compatibility with excipientes. J Therm Anal Calorim. 99:631–637.
  • Mura P, Faucci MT, Parrini PL. 2001. Effects of grinding with microcrystalline cellulose and cyclodextrins on the ketoprofen physicochemical properties. Drug Dev Ind Pharm. 27:119–128.
  • Otsuka M, Matsuda Y. 1995. Effect of cogrinding with various kinds of surfactants on the dissolution behavior of phenytoin. J Pharm Sci. 84:1434–1437.
  • Paradkar A, Ambike AA, Jadhav BK, Mahadik K. 2004. Characterization of curcumin-PVP solid dispersion obtained by spray drying. Int J Pharm. 271:281–286.
  • Planinšek O, Kovačič B, Vrečer F. 2011. Carvedilol dissolution improvement by preparation of solid dispersions with porous silica. Int J Pharm. 406:41–48.
  • Potluri RHK, Bandari S, Jukanti R, Veerareddy PR. 2011. Solubility enhancement and physicochemical characterization of carvedilol solid dispersion with Gelucire 50/13. Arch Pharm Res. 34:51–57.
  • Shahbaziniaz M, Foroutan SM, Bolourchian N. 2013. Dissolution rate enhancement of clarithromycin using ternary ground mixtures: nanocrystal formation. Iran J Pharm Res. 12:587–598.
  • Shamma RN, Basha M. 2013. Soluplus®: a novel polymeric solubilizer for optimization of carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Tech. 237:406–414.
  • Sharma A, Jain C. 2010. Preparation and characterization of solid dispersions of carvedilol with PVP K30. Res Pharm Sci. 5:49–56.
  • Sharma D, Joshi S. 2007. Solubility enhancement strategies for poorly water-soluble drugs in solid dispersions: a review. Asian J Pharm. 1:9–19.
  • Sugimoto M, Okagaki T, Narisawa S, Koida Y, Nakajima K. 1998. Improvement of dissolution characteristics and bioavailability of poorly water-soluble drugs by novel cogrinding method using water-soluble polymer. Int J Pharm. 160:11–19.
  • Tapas A, Kawtikwar P, Sakarkar D. 2012. An improvement in physicochemical properties of carvedilol through spherically agglomerated solid dispersions with PVP K30. Acta Pol Pharm. 69:299–308.
  • Tiţa B, Fuliaş A, Bandur G, Marian E, Tiţa D. 2011. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed Anal. 56:221–227.
  • Tran TT-D, Tran KA, Tran P-L. 2015. Modulation of particle size and molecular interactions by sonoprecipitation method for enhancing dissolution rate of poorly water-soluble drug. Ultrason Sonochem. 24:256–263.
  • Varghese S, Ghoroi C. 2017. Improving the wetting and dissolution of ibuprofen using solventless co-milling. Int J Pharm. 533:145–155.
  • Viana RB, da Silva AB, Pimentel AS. 2012. Infrared spectroscopy of anionic, cationic, and zwitterionic surfactants. Adv Phys Chem. 2012:903272.
  • Vogt M, Kunath K, Dressman JB. 2008. Dissolution improvement of four poorly water soluble drugs by cogrinding with commonly used excipients. Eur J Pharm Biopharm. 68:330–337.
  • Yamada T, Saito N, Imai T, Otagiri M. 1999. Effect of grinding with hydroxypropyl cellulose on the dissolution and particle size of a poorly water-soluble drug. Chem Pharm Bull. 47:1311–1313.
  • Yuvaraja K, Khanam J. 2014. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid. J Pharm Biomed Anal. 96:10–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.