383
Views
0
CrossRef citations to date
0
Altmetric
Research Article

How Do Adults with Dyslexia Recognize Spoken Words? Evidence from Behavioral and EEG Data

ORCID Icon, , &

References

  • Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159. https://doi.org/10.1162/neco.1995.7.6.1129
  • Berberyan, H. S., Rijn Van, H., & Borst, J. P. (2021). Brain and cognition discovering the brain stages of lexical decision: Behavioral effects originate from a single neural decision process. Brain & Cognition, 153, 105786. https://doi.org/10.1016/j.bandc.2021.105786
  • Boersma, P., & Weenink, D. (2015). Praat: Doing phonetics by computer [ Computer program]. Version 5.3.50, retrieved from http://www.praat.org/
  • Boets, B., Op de Beeck, H. P., Vandermosten, M., Scott, S. K., Gillebert, C. R., Mantini, D., Bulthe, J., Sunaert, S., Wouters, J., & Ghesquière, P. (2013). Intact but less accessible phonetic representations in adults with Dyslexia. Science, 342(6163), 1251–1254. https://doi.org/10.1126/science.1244333
  • Bonte, M. L., & Blomert, L. (2004a). Developmental changes in ERP correlates of spoken word recognition during early school years: A phonological priming study. Clinical Neurophysiology, 115(2), 409–423. https://doi.org/10.1016/S1388-2457(03)00361-4
  • Bonte, M. L., & Blomert, L. (2004b). Developmental dyslexia: ERP correlates of anomalous phonological processing during spoken word recognition. Cognitive Brain Research, 21(3), 360–376. https://doi.org/10.1016/j.cogbrainres.2004.06.010
  • Bonte, M. L., Parviainen, T., Hytönen, K., & Salmelin, R. (2006). Time course of top-down and bottom-up influences on syllable processing in the auditory cortex. Cerebral Cortex, 16(1), 115–123. https://doi.org/10.1093/cercor/bhi091
  • Bonte, M. L., Poelmans, H., & Blomert, L. (2007). Deviant neurophysiological responses to phonological regularities in speech in dyslexic children. Neuropsychologia, 45(7), 1427–1437. https://doi.org/10.1016/j.neuropsychologia.2006.11.009
  • Breznitz, Z. (2002). Asynchrony of visual-orthographic and auditory-phonological word recognition processes: An underlying factor in dyslexia. Reading & Writing, 15(1/2), 15–42. https://doi.org/10.1023/A:1013864203452
  • Breznitz, Z., & Meyler, A. (2003). Speed of lower-level auditory and visual processing as a basic factor in dyslexia: Electrophysiological evidence. Brain and Language, 85(2), 166–184. https://doi.org/10.1016/S0093-934X(02)00513-8
  • Brouwer, H., Crocker, M. W., Venhuizen, N. J., & Hoeks, J. C. J. (2017). A neurocomputational model of the N400 and the P600 in language processing. Cognitive Science, 41, 1318–1352. https://doi.org/10.1111/cogs.12461
  • Callens, M., Tops, W., Stevens, M., & Brysbaert, M. (2014). An exploratory factor analysis of the cognitive functioning of first-year bachelor students with dyslexia. Annals of Dyslexia, 64(1), 91–119. https://doi.org/10.1007/s11881-013-0088-6
  • Canette, L.-H., Fiveash, A., Krzonowski, J., Corneyllie, A., Lalitte, P., Thompson, D., Trainor, L., Bedoin, N., & Tillmann, B. (2020). Regular rhythmic primes boost P600 in grammatical error processing in dyslexic adults and matched controls. Neuropsychologia, 138, 1–12. https://doi.org/10.1016/j.neuropsychologia.2019.107324
  • Cantiani, C., Lorusso, M. L., Perego, P., Molteni, M., & Guasti, M. T. (2013). Event-related potentials reveal anomalous morphosyntactic processing in developmental dyslexia. Applied Psycholinguistics, 34(6), 1135–1162. https://doi.org/10.1017/S0142716412000185
  • Castet, É., Descamps, M., Denis-Noël, A., & Colé, P. (2019). Dyslexia research and the partial report task: A first step toward acknowledging iconic and visual short-term memory. Scientific Studies of Reading, 24(2), 159–169. https://doi.org/10.1080/10888438.2019.1642341
  • Cavalli, E., Casalis, S., El-Ahmadi, A., Zira, M., Poracchia-George, F., & Colé, P. (2016). Vocabulary skills are well developed in university students with dyslexia: Evidence from multiple case studies. Research in Developmental Disabilities, 51–52, 89–102. https://doi.org/10.1016/j.ridd.2016.01.006
  • Cavalli, E., Colé, P., Leloup, G., Poracchia-George, F., Sprenger-Charolles, L., & El Ahmadi, A. (2018). Screening for Dyslexia in French-speaking university students: An evaluation of the detection accuracy of the alouette test. Journal of Learning Disabilities, 51(3), 268–282. https://doi.org/10.1177/0022219417704637
  • Cavalli, E., Duncan, L. G., Elbro, C., El-Ahmadi, A., & Colé, P. (2017). Phonemic—Morphemic dissociation in university students with dyslexia: An index of reading compensation? Annals of Dyslexia, 67(1), 63–84. https://doi.org/10.1007/s11881-016-0138-y
  • Cheyette, S. J., & Plaut, D. C. (2017). Modeling the N400 ERP component as transient semantic over-activation within a neural network model of word comprehension. Cognition, 162(3), 153–166. https://doi.org/10.1016/j.cognition.2016.10.016
  • Colé, P., Duncan, L. G., & Cavalli, E. (2020). Les compensations de l’adulte dyslexique de niveau universitaire. In P. Colé, E. Cavalli, & L. G. Duncan (Eds.), La dyslexie à l’âge adulte : Approche neuropsychologique (pp. 287–324). De Boeck Supérieur.
  • Corkett, J. K., & Parrila, R. (2008). Use of context in the word recognition process by adults with a significant history of reading difficulties. Annals of Dyslexia, 58(2), 139–161. https://doi.org/10.1007/s11881-008-0018-1
  • Cox, C. R., Seidenberg, M. S., & Rogers, T. T. (2015). Connecting functional brain imaging and parallel distributed processing. Language, Cognition and Neuroscience, 30(4), 380–394. https://doi.org/10.1080/23273798.2014.994010
  • Delogu, F., Brouwer, H., & Crocker, M. W. (2021). When components collide: Spatiotemporal overlap of the N400 and P600 in language comprehension. Brain Research, 1766, 147514. https://doi.org/10.1016/j.brainres.2021.147514
  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
  • Denis-Noël, A., Pattamadilok, C., Castet, E., & Colé, P. (2020). Activation time-course of phonological code in silent word recognition in adult readers with and without dyslexia. Annals of Dyslexia, 70, 313–338.
  • Dole, M., Hoen, M., & Meunier, F. (2012). Speech-in-noise perception deficit in adults with dyslexia: Effects of background type and listening configuration. Neuropsychologia, 50(7), 1543–1552. https://doi.org/10.1016/j.neuropsychologia.2012.03.007
  • Dole, M., Meunier, F., & Hoen, M. (2014). Functional correlates of the speech-in-noise perception impairment in dyslexia: An MRI study. Neuropsychologia, 60(1), 103–114. https://doi.org/10.1016/j.neuropsychologia.2014.05.016
  • Dufour, S., Brunellière, A., & Frauenfelder, U. H. (2013). Tracking the time course of word-frequency effects in auditory word recognition with event-related potentials. Cognitive Science, 37(3), 489–507. https://doi.org/10.1111/cogs.12015
  • Dunn, L. M., & Dunn, L. M. (1981). Peabody Picture Vocabulary Test – Revised: Manual for Forms L and M. (Circle Pin). MN, American Guidance Services.
  • Dunn, L. M., Theriault-Whalen, C. M., & Dunn, L. M. (1993). Echelle de vocabulaire en image Peabody. (Psychan).
  • Elbro, C., Nielsen, I., & Petersen, D. K. (1994). Dyslexia in adults: Evidence for deficits in non-word reading and in the phonological representation of lexical items. Annals of Dyslexia, 44(1), 203–226. https://doi.org/10.1007/BF02648162
  • Fogarty, J. S., Barry, R. J., & Steiner, G. Z. (2020). The first 250 ms of auditory processing: No evidence of early processing negativity in the Go/NoGo Task. Scientific Reports, 10(1), 4041. https://doi.org/10.1038/s41598-020-61060-9
  • Friedrich, C. K., Eulitz, C., & Lahiri, A. (2006). Not every pseudoword disrupts word recognition: An ERP study. Behavioral and Brain Functions: BBF, 2(1), 36. https://doi.org/10.1186/1744-9081-2-36
  • Gabay, Y., & Holt, L. L. (2021). Adaptive plasticity under adverse listening conditions is disrupted in developmental Dyslexia. Journal of the International Neuropsychological Society, 27(1), 12–22. https://doi.org/10.1017/S1355617720000661
  • Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24(2), 95–112. https://doi.org/10.1007/BF02289823
  • Gu, C., & Bi, H.-Y. (2020). Auditory processing deficit in individuals with dyslexia: A meta-analysis of mismatch negativity. Neuroscience & Biobehavioral Reviews, 116, 396–405. https://doi.org/10.1016/j.neubiorev.2020.06.032
  • Hazan, V., Messaoud-Galusi, S., & Rosen, S. (2013). The effect of talker and intonation variability on speech perception in noise in children with dyslexia. Journal of Speech, Language, & Hearing Research, 56(1), 44. https://doi.org/10.1044/1092-4388(2012/10-0107
  • Hazan, V., Messaoud-Galusi, S., Rosen, S., Nouwens, S., & Shakespeare, B. (2009). Speech perception abilities of adults with dyslexia: Is there any evidence for a true deficit? Journal of Speech, Language, & Hearing Research, 52(6), 1510–1529. https://doi.org/10.1044/1092-4388(2009/08-0220)
  • Helenius, P., Parviainen, T., Paetau, R., & Salmelin, R. (2009). Neural processing of spoken words in specific language impairment and dyslexia. Brain: A Journal of Neurology, 132(7), 1918–1927. https://doi.org/10.1093/brain/awp134
  • Hu, L., Valentini, E., Zhang, Z. E., Liang, M., & Tannetti, G. D. (2014). The primary somatosensory cortex contributes to the latest part of the cortical response elicited by nociceptive somatosensory stimuli in humans. NeuroImage, 84, 383–393. https://doi.org/10.1016/j.neuroimage.2013.08.057
  • Janse, E., de Bree, E., & Brouwer, S. (2010). Decreased sensitivity to phonemic mismatch in spoken word processing in adult developmental dyslexia. Journal of Psycholinguistic Research, 39(6), 523–539. https://doi.org/10.1007/s10936-010-9150-2
  • Kocagoncu, E., Clarke, A., Devereux, B. J., & Tyler, L. K. (2016). Decoding the cortical dynamics of sound-meaning mapping. Journal of Neuroscience, 37(5), 1312–1319. https://doi.org/10.1523/JNEUROSCI.2858-16.2016
  • Kong, W., Wang, L., Zhang, J., Zhao, Q., & Sun, J. (2018). The dynamic EEG microstates in mental rotation sensors. Sensors, 18(9), 2920. https://doi.org/10.3390/s18092920
  • Lehmann, D., Ozaki, H., & Pal, I. (1987). EEG alpha map series: Brain micro-states by space-oriented adaptive segmentation. Electroencephalography and Clinical Neurophysiology, 67(3), 271–288. https://doi.org/10.1016/0013-4694(87)90025-3
  • Livingston, L. A., & Happé, F. (2017). Conceptualising compensation in neurodevelopmental disorders: Reflections from autism spectrum disorder. Neuroscience & Biobehavioral Reviews, 80, 729–742. https://doi.org/10.1016/j.neubiorev.2017.06.005
  • MacGregor, L. J., Pulvermüller, F., van Casteren, M., & Shtyrov, Y. (2012). Ultra-rapid access to words in the brain. Nature Communications, 3(711), 1–7. https://doi.org/10.1038/ncomms1715
  • Mahé, G., Pont, C., Zesiger, P., & Laganaro, M. (2018). The electrophysiological correlates of developmental dyslexia: New insights from lexical decision and reading aloud in adults. Neuropsychologia, 121, 19–27. https://doi.org/10.1016/j.neuropsychologia.2018.10.025
  • Marchetti, R., Vaugoyeau, M., Colé, P., & Assaiante, C. (2022). A sensorimotor representation impairment in dyslexic adults: A specific profile of comorbidity. Neuropsychologia, 165, 108134. https://doi.org/10.1016/j.neuropsychologia.2021.108134
  • Marslen-Wilson, W. D. (1987). Functional parallelism in spoken word-recognition. Cognition, 25(1–2), 71–102. https://doi.org/10.1016/0010-0277(87)90005-9
  • Marslen-Wilson, W. D., & Welsh, A. (1978). Processing interactions and lexical access during word recognition in continuous speech. Cognitive Psychology, 10(1), 29–63. https://doi.org/10.1016/0010-0285(78)90018-X
  • Mengisidou, M., & Marshall, C. R. (2019). Deficient explicit access to phonological representations explains phonological fluency difficulties in Greek children with dyslexia and/or developmental language disorder. Frontiers in Psychology, 10, 1–16. https://doi.org/10.3389/fpsyg.2019.00638
  • Metsala, J. L. (1997). Spoken word recognition in reading disabled children. Journal of Educational Psychology, 89(1), 159–169. https://doi.org/10.1037/0022-0663.89.1.159
  • New, B., Pallier, C., Ferrand, L., & Matos, R. (2001). Une base de données lexicales du français contemporain sur internet : LEXIQUE™//A lexical database for contemporary French : LEXIQUE™. L’année psychologique, 101(3), 447–462. https://doi.org/10.3406/psy.2001.1341
  • O’Rourke, T. B., & Holcomb, P. J. (2002). Electrophysiological evidence for the efficiency of spoken word processing. Biological Psychology, 60(2–3), 121–150. https://doi.org/10.1016/S0301-0511(02)00045-5
  • Paiva, T. O., Almeida, P. R., Ferreiras-Santos, F., Vieira, J. B., Silveira, C., Chaves, P. L., Barbosa, F., & Marques-Teixeira, J. (2016). Similar sound intensity dependence of the N1 and P2 components of the auditory ERP: Averaged and single trial evidence. Clinical Neurophysiology, 127(1), 499–508. https://doi.org/10.1016/j.clinph.2015.06.016
  • Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1995). Segmentation of brain electrical activity into microstates: Model estimation and validation. IEEE Transactions on Biomedical Engineering, 42(7), 658–665. https://doi.org/10.1109/10.391164
  • Paz-Alonso, P. M., Oliver, M., Lerma-Usabiaga, G., Caballero-Gaudes, C., Quiñones, I., Suárez-Coalla, P., Duñabeitia, J. A., Cuetos, F., & Carreiras, M. (2018). Neural correlates of phonological, orthographic and semantic reading processing in dyslexia. NeuroImage: Clinical, 20, 433–447. https://doi.org/10.1016/j.nicl.2018.08.018
  • Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101(2), 385–413. https://doi.org/10.1016/j.cognition.2006.04.008
  • Perrachione, T. K., Del Tufo, S. N., Winter, R., Murtagh, J., Cyr, A., Chang, P., Halverson, K., Ghosh, S. S., Christodoulou, J. A., & Gabrieli, J. D. E. (2016). Dysfunction of rapid neural adaptation in dyslexia. Neuron, 92(6), 1383–1397. https://doi.org/10.1016/j.neuron.2016.11.020
  • Poulsen, A. T., Pedroni, A., Langer, N., & Hansen, L. K. (2018). Microstate EEGlab toolbox: An introductory guide. bioRxiv. https://doi.org/10.1101/289850
  • Pylkkänen, L., & Marantz, A. (2003). Tracking the time course of word recognition with MEG. Trends in Cognitive Sciences, 7(5), 187–189. https://doi.org/10.1016/S1364-6613(03)00092-5
  • Ramus, F. (2014). Neuroimaging sheds new light on the phonological deficit in dyslexia. Trends in Cognitive Sciences, 18(6), 274–275. https://doi.org/10.1016/j.tics.2014.01.009
  • Ramus, F., Rosen, S., Dakin, S. C., Day, B. L., Castellote, J. M., White, S., & Frith, U. (2003). Theories of developmental dyslexia: Insights from a multiple case study of dyslexic adults. Brain: A Journal of Neurology, 126(4), 841–865. https://doi.org/10.1093/brain/awg076
  • Ramus, F., & Szenkovits, G. (2008). What phonological deficit? The Quarterly Journal of Experimental Psychology, 61(1), 129–141. https://doi.org/10.1080/17470210701508822
  • Ransby, M. J., & Swanson, H. L. (2003). Reading comprehension skills of young adults with childhood diagnoses of dyslexia. Journal of Learning Disabilities, 36(6), 538–555. https://doi.org/10.1177/00222194030360060501
  • Rasamimanana, M., Barbaroux, M., Colé, P., & Besson, M. (2020). Semantic compensation and novel word learning in university students with dyslexia. Neuropsychologia, 139(December 2019), 107358. https://doi.org/10.1016/j.neuropsychologia.2020.107358
  • Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for Raven’s Progressive Matrices and Vocabulary Scales. The Psychological Corporation.
  • Sinha, S. R., Sullivan, L., Sabau, D., San-Juan, D., Dombrowski, K. E., Halford, J. J., Hani, A. J., Drislane, F. W., & Stecker, M. M. (2016). American Clinical Neurophysiology Society Guideline 1: Minimum Technical Requirements for Performing Clinical Electroencephalography. Journal of Clinical Neurophysiology, 33(4), 303–307. https://doi.org/10.1097/WNP.0000000000000308
  • Smith-Spark, J. H., & Fisk, J. E. (2007). Working memory functioning in developmental dyslexia. Memory, 15(1), 34–56. https://doi.org/10.1080/09658210601043384
  • Sprenger-Charolles, L., Colé, P., Béchennec, D., & Kipffer-Piquard, A. (2005). French normative data on reading and related skills from EVALEC, a new computerized battery of tests (end Grade 1, Grade 2, Grade 3, and Grade 4). Revue Européenne de Psychologie Appliquée/European Review of Applied Psychology, 55(3), 157–186. https://doi.org/10.1016/j.erap.2004.11.002
  • Tait, L., & Zhang, J. (2022). MEG Cortical microstates: Spatiotemporal characteristics, dynamics, functional connectivity and stimulus-evoked responses. NeuroImage, 251, 119006. https://doi.org/10.1016/j.neuroimage.2022.119006
  • Takeichi, H., Koyama, S., Terao, A., Takeuchi, F., Toyosawa, Y., & Murohashi, H. (2010). Comprehension of degraded speech sounds with m-sequence modulation: An fMRI study. NeuroImage, 49(3), 2697–2706. https://doi.org/10.1016/j.neuroimage.2009.10.063
  • Tiedt, H. O., Ehlen, F., Krugel, L. K., Horn, A., Kühn, A. A., & Klostermann, F. (2017). Subcortical roles in lexical task processing: Inferences from thalamic and subthalamic event-related potentials. Human Brain Mapping, 38(1), 370–383. https://doi.org/10.1002/hbm.23366
  • Virtala, P., Talola, S., Partanen, E., & Kujala, T. (2020). Poor neural and perceptual phoneme discrimination during acoustic variation in dyslexia. Scientific Reports, 10(1), 8646. https://doi.org/10.1038/s41598-020-65490-3
  • Wagner, M., Roychoudhury, A., Campanelli, L., Shafer, V. L., Martin, B., & Steinschneider, M. (2016). Representation of spectro-temporal features of spoken words within the P1-N1-P2 and T-complex of the auditory evoked potentials (AEP). Neuroscience Letters, 614, 119–126. https://doi.org/10.1016/j.neulet.2015.12.020
  • Wilson, A. M., & Lesaux, N. K. (2001). Persistence of phonological processing deficits in college students with dyslexia who have age-appropriate reading skills. Journal of Learning Disabilities, 34(5), 394–400. https://doi.org/10.1177/002221940103400501
  • Winkler, I., Debener, S., Muller, K.-R., & Tangermann, M. (2015). On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 4101–4105. https://doi.org/10.1109/EMBC.2015.7319296
  • Winsler, K., Midgley, K. J., Grainger, J., & Holcomb, P. J. (2018). An electrophysiological megastudy of spoken word recognition. Language, Cognition and Neuroscience, 33(8), 1063–1082. https://doi.org/10.1080/23273798.2018.1455985
  • Wolf, M., & Bowers, P. G. (2000). Naming-speed processes and developmental reading disabilities: An introduction to the special issue on the double-deficit hypothesis. Journal of Learning Disabilities, 33(4), 322–324. https://doi.org/10.1177/002221940003300404
  • Ylinen, S., Nora, A., & Service, E. (2020). Better phonological short-term memory is linked to improved cortical memory representations for word forms and better word learning. Frontiers in Human Neuroscience, 14(June), 1–12. https://doi.org/10.3389/fnhum.2020.00209
  • Ziegler, J. C., Pech-Georgel, C., George, F., & Lorenzi, C. (2009). Speech-perception-in-noise deficits in dyslexia. Developmental Science, 12(5), 732–745. https://doi.org/10.1111/j.1467-7687.2009.00817.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.