711
Views
9
CrossRef citations to date
0
Altmetric
Commentary

Using digital outcrops to make the high Arctic more accessible through the Svalbox database

ORCID Icon, , , ORCID Icon, ORCID Icon, , ORCID Icon, , , , ORCID Icon, , ORCID Icon, , ORCID Icon, , , , , , , & ORCID Icon show all
Pages 123-137 | Received 14 Jun 2019, Accepted 16 Jul 2020, Published online: 05 Oct 2020

References

  • Allmendinger, R. W., Siron, C. R., & Scott, C. P. (2017). Structural data collection with mobile devices: Accuracy, redundancy, and best practices. Journal of Structural Geology, 102, 98–112. https://doi.org/10.1016/j.jsg.2017.07.011
  • Anell, I., Lecomte, I., Braathen, A., & Buckley, S. (2016). Synthetic seismic illumination of small-scale growth faults, paralic deposits and low-angle clinoforms: A case study of the Triassic successions on Edgeøya, NW Barents Shelf. Marine and Petroleum Geology, 77, 625–639. https://doi.org/10.1016/j.marpetgeo.2016.07.005
  • Arrowsmith, C., Counihan, A., & McGreevy, D. (2005). Development of a multi-scaled virtual field trip for the teaching and learning of geospatial science. International Journal of Education and Development Using ICT, 1(3), 42–56.
  • Bailey, J., Whitmeyer, S., & De Paor, D. (2012). Introduction: The application of Google Geo Tools to geoscience education and research. Geological Society of America Special Papers, 492, vii–xix.
  • Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele, S. T., & Bangash, H. A. (2014). Ground-based and UAV-based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology, 69, 163–178. https://doi.org/10.1016/j.jsg.2014.10.007
  • Betlem, P., Birchall, T., Ogata, K., Skurtveit, E., Park, J., & Senger, K. (2020). Digital drill core models: using structure-from-motion as a tool for the characterisation, orientation, and digital archiving of drill core samples. Remote Sensing, 12(2), 330. https://doi.org/10.3390/rs12020330
  • Betlem, P., & Senger, K. (2018 Multi-physical characterization of near-coastal cryosphere onshore Spitsbergen, Arctic Norway [Paper presentation]. Paper Presented at the the 24th EM Induction Workshop, Helsingør, Denmark. 13–20 Aug 2018.
  • Buckley, S. J., Howell, J. A., Enge, H. D., & Kurz, T. H. (2008). Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society, 165(3), 625–638. https://doi.org/10.1144/0016-76492007-100
  • Buckley, S. J., Ringdal, K., Naumann, N., Dolva, B., Kurz, T. H., Howell, J. A., & Dewez, T. J. (2019). LIME: Software for 3-D visualization, interpretation, and communication of virtual geoscience models. Geosphere, 15(1), 222–235. https://doi.org/10.1130/GES02002.1
  • Carrivick, J. L., Smith, M. W., & Quincey, D. J. (2016). Structure from Motion in the Geosciences. John Wiley & Sons.
  • Casini, G., Hunt, D., Monsen, E., & Bounaim, A. (2016). Fracture characterization and modeling from virtual outcrops. AAPG Bulletin, 100(01), 41–61. https://doi.org/10.1306/09141514228
  • Cawood, A. J., Bond, C. E., Howell, J. A., Butler, R. W. H., & Totake, Y. (2017). LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models. Journal of Structural Geology, 98, 67–82. https://doi.org/10.1016/j.jsg.2017.04.004
  • Chesley, J., Leier, A., White, S., & Torres, R. (2017). Using unmanned aerial vehicles and structure-from-motion photogrammetry to characterize sedimentary outcrops: An example from the Morrison Formation, Utah, USA. Sedimentary Geology, 354, 1–8. https://doi.org/10.1016/j.sedgeo.2017.03.013
  • Corradetti, A., McCaffrey, K., De Paola, N., & Tavani, S. (2017). Evaluating roughness scaling properties of natural active fault surfaces by means of multi-view photogrammetry. Tectonophysics, 717, 599–606. https://doi.org/10.1016/j.tecto.2017.08.023
  • Dallmann, W. K., Dypvik, H., Gjelberg, J. G., Harland, W. B., Johannessen, E. P., Keilen, H. B., Larssen, G. B., Lønøy, A., Midbøe, P. S., Mørk, A., Nagy, J., Nilsson, I., Nøttvedt, A., Olaussen, S., Pcelina, T. M., Steel, R. J., & Worsley, D. (1999). Lithostratigraphic Lexicon of Svalbard: Review and recommendations for nomenclature use. Norsk Polarinstitutt.
  • De Paor, D. G. (2016). Virtual rocks. GSA Today, 26(8), 4–11. https://doi.org/10.1130/GSATG257A.1
  • Dodick, J., Argamon, S., & Chase, P. (2009). Understanding scientific methodology in the historical and experimental sciences via language analysis. Science & Education, 18(8), 985–1004. https://doi.org/10.1007/s11191-008-9146-6
  • Dolphin, G., Dutchak, A., Karchewski, B., & Cooper, J. (2019). Virtual field experiences in introductory geology: Addressing a capacity problem, but finding a pedagogical one. Journal of Geoscience Education, 67(2), 114–130. https://doi.org/10.1080/10899995.2018.1547034
  • Eide, C. H., Schofield, N., Lecomte, I., Buckley, S. J., & Howell, J. A. (2018). Seismic interpretation of sill complexes in sedimentary basins: implications for the sub-sill imaging problem. Journal of the Geological Society, 175(2), 193–209. https://doi.org/10.1144/jgs2017-096
  • Enge, H. D., Buckley, S. J., Rotevatn, A., & Howell, J. A. (2007). From outcrop to reservoir simulation model: Workflow and procedures. Geosphere, 3(6), 469–490. https://doi.org/10.1130/ges00099.1
  • Flaig, P. P., Hasiotis, S. T., Prather, T. J., & Burton, D. (2019). Characteristics of a Campanian delta deposit controlled by alternating river floods and tides: the Loyd Sandstone, Rangely Anticline, Colorado, USA. Journal of Sedimentary Research, 89(12), 1181–1206. https://doi.org/10.2110/jsr.2019.63
  • Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., & Carbonneau, P. E. (2013). Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms, 38(4), 421–430. https://doi.org/10.1002/esp.3366
  • Frodeman, R. (1995). Geological reasoning: Geology as an interpretive and historical science. Geological Society of America Bulletin, 107(8), 960–968. https://doi.org/10.1130/0016-7606(1995)107<0960:GRGAAI > 2.3.CO;2
  • Galland, O., Spacapan, J. B., Rabbel, O., Mair, K., Soto, F. G., Eiken, T., Schiuma, M., & Leanza, H. A. (2019). Structure, emplacement mechanism and magma-flow significance of igneous fingers – Implications for sill emplacement in sedimentary basins. Journal of Structural Geology, 124, 120–135. https://doi.org/10.1016/j.jsg.2019.04.013
  • Giorgis, S. (2015). Google Earth mapping exercises for structural geology students—A promising intervention for improving penetrative visualization ability. Journal of Geoscience Education, 63(2), 140–146. https://doi.org/10.5408/13-108.1
  • Gonzaga, L., Veronez, M. R., Kannenberg, G. L., Alves, D. N., Santana, L. G., de Fraga, J. L., Inocencio, L. C., de Souza, L. V., Marson, F., Bordin, F., Tognoli, F. M. W., Senger, K., & Cazarin, C. L. (2018). MOSIS – Multi-Outcrop Sharing & Interpretation System. IEEE Geoscience and Remote Sensing Magazine, 6(2), 8–16. https://doi.org/10.1109/MGRS.2018.2825990
  • Guerin, A., Nguyen, L., Abellán, A., Carrea, D., Derron, M.-H., & Jaboyedoff, M. (2015). Common problems encountered in 3D mapping of geological contacts using high-resolution terrain and image data. European Journal of Remote Sensing, 48(1), 661–672. https://doi.org/10.5721/EuJRS20154836
  • Hesthammer, J. (2003). How modern technology can meet needs of modern learning in geoscience. First Break, 21(8), 41–46.
  • Hodgetts, D. (2013). Laser scanning and digital outcrop geology in the petroleum industry: a review. Marine and Petroleum Geology, 46, 335–354. https://doi.org/10.1016/j.marpetgeo.2013.02.014
  • Horowitz, S. S., & Schultz, P. H. (2014). Printing Space: Using 3D Printing of Digital Terrain Models in Geosciences Education and Research. Journal of Geoscience Education, 62(1), 138–145. https://doi.org/10.5408/13-031.1
  • Hossa, P., Horota, R. K., Junior, A. M., Aires, A. S., De Souza, E. M., Kannenberg, G. L., De Fraga, J. L., Santana, L., Alves, D. N., & Boesing, J. (2019 MOSIS: Immersive Virtual Field Environments for Earth Sciences < SE-END> [Paper presentation].</SE-END>Paper Presented at the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR),. https://doi.org/10.1109/VR.2019.8797909
  • Howell, J. A., Martinius, A. W., & Good, T. R. (2014). The application of outcrop analogues in geological modelling: a review, present status and future outlook. In A. W. Martinius, J. A. Howell, & T. R. Good (Eds.), Sediment-Body Geometry and Heterogeneity: Analogue Studies for Modelling the Subsurface. (Vol. 387, pp. 1–25)Geological Society of London. https://doi.org/10.1144/SP387.12
  • Jacobson, A. R., Militello, R., & Baveye, P. C. (2009). Development of computer-assisted virtual field trips to support multidisciplinary learning. Computers & Education, 52(3), 571–580. https://doi.org/10.1016/j.compedu.2008.11.007
  • James, M. R., Chandler, J. H., Eltner, A., Fraser, C., Miller, P., Mills, J., Noble, T., Robson, S., & Lane, S. (2019). Guidelines on the use of Structure from Motion Photogrammetry in Geomorphic Research. Earth Surface Processes and Landforms, 44(10), 2081–2084. https://doi.org/10.1002/esp.4637
  • James, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117(F3), n/a–n/a. https://doi.org/10.1029/2011JF002289
  • Kastens, K. A., & Ishikawa, T. (2006). Spatial thinking in the geosciences and cognitive sciences: A cross-disciplinary look at the intersection of the two fields. Special Papers-Geological Society of America, 413, 53.
  • Kastens, K. A., Manduca, C. A., Cervato, C., Frodeman, R., Goodwin, C., Liben, L. S., Mogk, D. W., Spangler, T. C., Stillings, N. A., & Titus, S. (2009). How geoscientists think and learn. Eos, Transactions American Geophysical Union, 90(31), 265–266. https://doi.org/10.1029/2009EO310001
  • Kehl, C., Buckley, S. J., Viseur, S., Gawthorpe, R. L., Mullins, J. R., & Howell, J. A. (2017). Mapping field photographs to textured surface meshes directly on mobile devices. The Photogrammetric Record, 32(160), 398–423. https://doi.org/10.1111/phor.12213
  • King, C. (2008). Geoscience education: An overview. Studies in Science Education, 44(2), 187–222. https://doi.org/10.1080/03057260802264289
  • Kortz, K. M., & Murray, D. P. (2009). Barriers to college students learning how rocks form. Journal of Geoscience Education, 57(4), 300–315. https://doi.org/10.5408/1.3544282
  • Larssen, K. (2018). Integrated characterization of the Upper Permian Kapp Starostin Formation in central Spitsbergen, Svalbard. From outcrop to geomodel. (MSc)University of Tromsø.
  • Lecomte, I., Lubrano-Lavadera, P., Anell, I., Buckley, S. J., Schmid, D. W., & Heeremans, M. (2015). Ray-based seismic modeling of geologic models: Understanding and analyzing seismic images efficiently. Interpretation, 3(4), SAC71–SAC89. https://doi.org/10.1190/INT-2015-0061.1
  • Lisle, R. J. (2006). Google Earth: a new geological resource. Geology Today, 22(1), 29–32. https://doi.org/10.1111/j.1365-2451.2006.00546.x
  • McCaffrey, K., Hodgetts, D., Howell, J., Hunt, D., Imber, J., Jones, R., Tomasso, M., Thurmond, J., & Viseur, S. (2010 Virtual fieldtrips for petroleum geoscientists < SE-END> [Paper presentation].</SE-END>Paper Presented at the Geological Society, London. Petroleum Geology Conference series.
  • Mead, C., Buxner, S., Bruce, G., Taylor, W., Semken, S., & Anbar, A. D. (2019). Immersive, interactive virtual field trips promote science learning. Journal of Geoscience Education, 67(2), 131–112. https://doi.org/10.1080/10899995.2019.1565285
  • Mogk, D. W., & Goodwin, C. (2012). Learning in the field: Synthesis of research on thinking and learning in the geosciences. Geological Society of America Special Papers, 486(0), 131–163.
  • Monet, J., & Greene, T. (2012). Using Google Earth and satellite imagery to foster place-based teaching in an introductory physical geology course. Journal of Geoscience Education, 60(1), 10–20. https://doi.org/10.5408/10-203.1
  • Mulrooney, M. J., & Senger, K. (2016). Automated mapping of discontinuities within Cretaceous dolerite sills, Central Spitsbergen, Arctic Norway [Paper presentation]. Paper Presented at the 2nd Virtual Geoscience Conference, Bergen, Norway. 21-23 Sept 2016.
  • Nesbit, P. R., Durkin, P. R., Hugenholtz, C. H., Hubbard, S. M., & Kucharczyk, M. (2018). 3-D stratigraphic mapping using a digital outcrop model derived from UAV images and structure-from-motion photogrammetry. Geosphere, 14(6), 2469–2486. https://doi.org/10.1130/GES01688.1
  • Novakova, L., & Pavlis, T. L. (2019). Modern methods in structural geology of twenty-first century: Digital mapping and digital devices for the field geology. In S. Mukherjee (Ed.), Teaching Methodologies in Structural Geology and Tectonics (pp. 43–54). Springer Singapore.
  • NPI (2019). Norwegian Polar Institute Map Data and Services.
  • Ogata, K., Mulrooney, M. J., Braathen, A., Maher, H., Osmundsen, P. T., Anell, I., Smyrak‐Sikora, A. A., & Balsamo, F. (2018). Architecture, deformation style and petrophysical properties of growth fault systems: the Late Triassic deltaic succession of southern Edgeøya (East Svalbard). Basin Research, 30(5), 1042–1073. https://doi.org/10.1111/bre.12296
  • Olaussen, S., Senger, K., Braathen, A., Grundvåg, S. A., & Mørk, A. (2019). You learn as long as you drill; research synthesis from the Longyearbyen CO2 Laboratory, Svalbard, Norway. Norwegian Journal of Geology, 99, 157–187. https://doi.org/10.17850/njg008
  • Olkowicz, M., Dabrowski, M., & Pluymakers, A. (2019). Focus stacking photogrammetry for micro‐scale roughness reconstruction: A methodological study. The Photogrammetric Record, 34(165), 11–35. https://doi.org/10.1111/phor.12270
  • Pringle, J. K., Howell, J. A., Hodgetts, D., Westerman, A. R., & Hodgson, D. M. (2006). Virtual outcrop models of petroleum reservoir analogues: A review of the current state-of-the-art. First Break, 24(1093), 33–42. https://doi.org/10.3997/1365-2397.2006005
  • Rabbel, O., Galland, O., Mair, K., Lecomte, I., Senger, K., Spacapan, J. B., & Manceda, R. (2018). From field analogues to realistic seismic modelling: A case study of an oil-producing andesitic sill complex in the Neuquén Basin, Argentina. Journal of the Geological Society, 175(4), 580–593. https://doi.org/10.1144/jgs2017-116
  • Rittersbacher, A., Buckley, S. J., Howell, J. A., Hampson, G. J., & Vallet, J. (2013). Helicopter-based laser scanning: A method for quantitative analysis of large-scale sedimentary architecture. In A. W. Martinius, J. A. Howell, & T. Good (Eds.), Sediment-body geometry and heterogeneity: Analogue studies for modelling the subsurface (pp. 1–18). Geological Society of London Special Publication #387.
  • Saether, B., Johansen, S. E., Hesthammer, J., Solbakken, O., & Synnestvedt, K. (2004). Using geosimulators to enhance field-based geological training. First Break, 22(6), 23–28.
  • Senger, K. (2019a). Early Cretaceous dolerites in Spitsbergen: A virtual field trip to the most accessible HALIP exposures [Paper presentation]. Paper Presented at the AGU Chapman Conference, Large-Scale Volcanism in the Arctic: The Role of the Mantle and Tectonics, Selfoss, Iceland. 13-18 October 2019
  • Senger, K. (2019b). Svalbox: A geoscientific database for high arctic teaching and research [Paper presentation]. Paper Presented at the AAPG Annual Conference & Exhibition, San Antonio, Texas.
  • Senger, K., Brugmans, P., Grundvåg, S.-A., Jochmann, M., Nøttvedt, A., Olaussen, S., Skotte, A., & Smyrak-Sikora, A. (2019). Petroleum, coal and research drilling onshore Svalbard: a historical perspective. Norwegian Journal of Geology, 99(3), 1–30. https://doi.org/10.17850/njg99-3-1
  • Senger, K., Farnsworth, W., Christiansen, H. H., Gilbert, G., Hancock, H., Hodson, A., Håkansson, L., Jensen, M., Jochmann, M., Mulrooney, M., Noormets, R., Olaussen, S., Prokop, A., & Smyrak-Sikora, A, & UNIS geology adjunct staff (2018). Field-based education in the high Arctic – how digital tools can support active learning in Geology [Paper presentation]. Paper Presented at the Nordic Geoscience Winter Meeting, Copenhagen. 11-13 January.
  • Senger, K., & Nordmo, I. (2020). Using digital field notebooks in geoscientific learning in polar environments. Journal of Geoscience Education, 1–12. https://doi.org/10.1080/10899995.2020.1725407
  • Senger, K., Smyrak-Sikora, A., Birchall, T., Betlem, P., Janocha, J. (2020). Digital feltundervisning. https://geoforskning.no/studenter/2270-digital-feltundervisning
  • Smith, M., Carrivick, J., & Quincey, D. (2016). Structure from motion photogrammetry in physical geography. Progress in Physical Geography: Earth and Environment, 40(2), 247–275. https://doi.org/10.1177/0309133315615805
  • Smyrak‐Sikora, A., Osmundsen, P. T., Braathen, A., Ogata, K., Anell, I., Mulrooney, M. J., & Zuchuat, V. (2019). Architecture of growth basins in a tidally influenced, prodelta to delta‐front setting: The Triassic succession of Kvalpynten, East Svalbard. Basin Research, 1–30. https://doi.org/10.1111/bre.12410
  • Stott, T., & Nuttall, A.-M. (2010). Design, development and student evaluation of interactive virtual field guides for teaching geosciences at Liverpool John Moores University, UK. Emerging Trends in Higher Education Learning and Teaching, 274, 64–71.
  • Turner, C. (2000). Messages in stone: Field geology in the American West. In R. Frodeman, & V. R. Baker (Eds.), Earth matters: The earth sciences, philosophy and the claims of community (pp. 51–62). Upper Saddle River, NJ: Prentice Hall.
  • van der Kolk, D. A., Flaig, P. P., & Hasiotis, S. T. (2015). Paleoenvironmental reconstruction of a late cretaceous, muddy, river-dominated polar deltaic system: Schrader Bluff–Prince Creek formation transition, Shivugak Bluffs, North Slope of Alaska, USA. Journal of Sedimentary Research, 85(8), 903–936. https://doi.org/10.2110/jsr.2015.58
  • Weng, Y.-H., Sun, F.-S., & Grigsby, J. D. (2012). GeoTools: An android phone application in geology. Computers & Geosciences, 44, 24–30. https://doi.org/10.1016/j.cageo.2012.02.027
  • Westoby, M., Brasington, J., Glasser, N., Hambrey, M., & Reynolds, J. (2012). Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/j.geomorph.2012.08.021
  • Worsley, D. (2008). The post-Caledonian development of Svalbard and the western Barents Sea. Polar Research, 27(3), 298–317. https://doi.org/10.1111/j.1751-8369.2008.00085.x
  • Zervas, D., Nichols, G. J., Hall, R., Smyth, H. R., Lüthje, C., & Murtagh, F. (2009). SedLog: A shareware program for drawing graphic logs and log data manipulation. Computers & Geosciences, 35(10), 2151–2159. https://doi.org/10.1016/j.cageo.2009.02.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.