844
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Antioxidant Radical Scavenging Properties of Phenolic Pent-4-En-1-Yne Derivatives Isolated From Hypoxis Rooperi. A DFT Study in vacuo and in Solution

, , , &
Pages 149-164 | Received 12 Feb 2013, Accepted 13 Jul 2013, Published online: 03 Sep 2014

REFERENCES

  • Bettolo, G.B.M.; Patamia, M.; Nikoletti, M.; Galeffi, C.; Messana, I. Research on African medicinal plants—II: Hypoxoside, a new glycoside of uncommon structure from hypoxis obtusa busch. Tetrahedron 1982, 38, 1683–1687.
  • Drewes, S.E.; Hall, A.J.; Learmonth, R.A.; Upfold, U.J. Isolation of hypoxoside from Hypoxis rooperi and synthesis of (E)-1,5-bis(3ʹ,4ʹ-dimethoxyphenyl)pent-4-en-l-yne. Phytochemistry 1984, 23, 1313–1316.
  • Potgieter, M.; Wenteler, G.L.; Drewes, S.E. Synthesis of rooperol [1,5-bis(3ʹ,4ʹ-dihydroxyphenyl)pent-l-en-4-yne]. Phytochemistry 1988, 27, 1101–1104.
  • Drewes, S.E.; Scogings, U.J.; Wenteler, G.L. Structure determination of a phenolic pent-1-en-4-yne derivative from hypoxis rooperi. Phytochemistry 1989, 28, 153–156.
  • Kruger, P.B.; Albrecht, C.F.; de V.; Liebenberg, R.W.; van Jaarsveld, P.P. Studies on hypoxoside and rooperol analogues from hypoxis rooperi and hypoxis latifolia and their biotransformation in man by using high-performance liquid chromatography with in-line sorption enrichment and diode-array detection. Journal of Chromatography B: Biomedical Sciences and Applications 1994, 662, 71–78.
  • Laporta, O.; Perez-Fons, L.; Mallavia, R.; Caturla, N.; Micol, V. Isolation, characterization, and antioxidant capacity assessment of the bioactive compounds derived from Hypoxis rooperi corm extract (African potato). Food Chemistry 2007, 101, 1425–1437.
  • Nair, V.D.P.; Foster, B.C.; Arnason, J.T.; Mills, E.J.; Kanfer, I. In vitro evaluation of human cytochrome P450 and P-glycoprotein-mediated metabolism of some phytochemicals in extracts and formulations of African potato. Phytomedicine 2007, 14, 498–507.
  • Drewes, S.E.; Elliot, E.; Khan, F.; Dhlamini, J.T.B.; Gcumisa, M.S.S. Hypoxis hemerocallidea—Not merely a cure for benign prostate hyperplasia. Journal of Ethnopharmacology 2008, 119, 593–598.
  • Dietzsch, E.; Albrecht, C.F.; Parker, M.I. Effect of rooperol on collagen synthesis and cell growth. International Union of Biochemistry and Molecular Biology Life 1999, 48, 321–325.
  • Erasto, P.; Adebola, P.O.; Grierson, D.S.; Afolayan, A.J. An ethnobotanical study of plants used for the treatment of diabetes in the Eastern Cape Province, South Africa. African Journal of Biotechnology 2005, 4, 1458–1640.
  • Nair, V.D.P.; Dairam, A.; Agbonon, A.; Arnason, J.T.; Foster, B.C.; Kanfer, I. Investigation of the antioxidant activity of African potato (Hypoxis hemerocallidea). Journal of Agricultural and Food Chemistry 2007, 55, 1707–1711.
  • Nair, V.D.P.; Kanfer, I. Development of dissolution tests for the quality control of complementary/alternate and traditional medicines: application to African potato products. Journal of Pharmaceutical Sciences 2008, 11, 35–44.
  • Kabanda, M.M. Antioxidant activity of Rooperol investigated through Cu (I and II) chelation ability and the hydrogen transfer mechanism: A DFT study. Chemical Research in Toxicology 2012, 25, 2153–2166.
  • Trouillas, P.; Marsal, P.; Svobodová, A.; Vostálová, J.; Gažák, R.; Hrbác, J.; Sedmera, P.; Křen, V.; Lazzaroni, R.; Duroux, J.L.; Walterová, D. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: A joint experimental and theoretical study. Journal of Physical Chemistry A 2008, 112, 1054–1063.
  • Pandey, K.B.; Rizvi, S.I. Ferric reducing and radical scavenging activities of selected important polyphenols present in foods. International Journal of Food Properties 2012, 15, 702–708.
  • Tumbas, V.T.; Čanadanović-Brunet, J.M.; Gille, L.; Đilas, S.M.; Ćetković, G.S. Characterization of the free radical scavenging activity of rose hip (Rosa canina L.) extract. International Journal of Food Properties 2012, 15, 188–201.
  • Makni, M.; Haddar, A.; Kriaa, W.; Zeghal, N. Antioxidant, free Radical Scavenging, and antimicrobial activities of ajugaiva leaf extracts. International Journal of Food Properties 2013, 16, 756–765.
  • Loizzo, M.R.; Di Lecce, G.; Boselli, E.; Menichini, F.; Frega, N.G. Radical scavenging, total antioxidant capacity, and antiproliferative activity of phenolic extracts from extra virgin olive oil by cultivar “Frantoio.” International Journal of Food Properties 2012, 15, 1345–1357.
  • Roy, S.; Hazra, B.; Mandal, N.; Chaudhuri, T.K. Assessment of the antioxidant and free radical scavenging activities of methanolic extract of diplazium esculentum. International Journal of Food Properties 2013, 16, 1351–1370.
  • Mammino, L. Investigation of the antioxidant properties of hyperjovinol A through its Cu(II) coordination ability. Journal of Molecular Modelling 2013, 19, 2127–2142.
  • Kozlowski, D.; Trouillas, P.; Calliste, C.; Marsal, P.; Lazzaroni, R.; Duroux, J.L. Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. Journal of Physical Chemistry A 2007, 111, 1138–1145.
  • Leopoldini, M.; Pitarch, I.P.; Russo, N.; Toscano, M. Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. Journal of Physical Chemistry A 2004, 108, 92–96.
  • Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. Journal of Physical Chemistry A 2004, 108, 4916–4922.
  • Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent. Theoretical Chemistry Accounts 2004, 111, 210–216.
  • Mammino, L.; Kabanda, M.M. A computational study of the effects of different solvents on the characteristics of the intramolecular hydrogen bond in acylphloroglucinols. Journal of Physical Chemistry A 2009, 113, 15064–15077.
  • Mammino, L.; Kabanda, M.M. A study of the intramolecular hydrogen bond in acylphloroglucinols. Journal of Molecular Structure (Theochem) 2009, 901, 210–219.
  • Kabanda, M.M.; Mammino, L. A Comparative study of the dimers of selected hydroxybenzenes. International Journal of Quantum Chemistry 2012, 112, 519–531.
  • Mammino, L.; Kabanda, M.M. Interplay of intramolecular hydrogen bonds, OH orientations, and symmetry factors in the stabilization of polyhydroxybenzenes. International Journal of Quantum Chemistry 2011, 111, 3701–3716.
  • Mammino, L.; Kabanda, M.M. Adducts of acylphloroglucinols with explicit water molecules: Similarities and differences across a sufficiently representative number of structures. International Journal of Quantum Chemistry 2010, 110, 2378–2390.
  • Mammino, L.; Kabanda, M.M. A computational study of the carboxylic acid of phloroglucinol in vacuo and in water solution. International Journal of Quantum Chemistry 2010, 110, 595–623.
  • Mammino, L.; Kabanda, M.M. A study of the interactions of the caespitate molecule with water. International Journal of Quantum Chemistry 2008, 108, 1772–1791.
  • Mammino, L.; Kabanda, M.M. A computational study of the interactions of the phloroglucinol molecule with water. Journal of Molecular Structure (Theochem) 2008, 852, 36–45.
  • Mammino, L.; Kabanda, M.M. Model structures for the study of acylated phloroglucinols and computational study of the caespitate molecule. Journal of Molecular Structure (Theochem) 2007, 805, 39–52.
  • Kabanda, M.M.; Ebenso, E.E. Structures, stabilization energies, and binding energies of quinoxaline·(H2O)n, quinoxaline dimer, and quinoxaline·Cu complexes: A theoretical study. Journal of Physical Chemistry A 2013, 117, 1583–1595.
  • Mammino, L.; Kabanda, M.M. The role of additional O–H...O intramolecular hydrogen bonds for acylphloroglucinols’ conformational preferences in vacuo and in solution. Molecular Simulation 2013, 39, 1–13.
  • Wu, T.; Zivanovic, S.; Draughon, A.F.; Conway, W.S.; Sams, C.E. Physicochemical properties and bioactivity of fungal chitin and chitosan. Journal of Agricultural and Food Chemistry 2005, 53, 3888–3894.
  • Leopoldini, M.; Rondinelli, F.; Russo, N.; Toscano, M. Pyranoanthocyanins: A theoretical investigation on their antioxidant activity. Journal of Agricultural and Food Chemistry 2010, 58, 8862–8871.
  • Wright, J.S.; Jonhson, E.R.; and DiLabio, G.A. Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society 2001, 123, 1173–1183.
  • Becker, A.D. Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics 1993, 98, 5648–5653.
  • Zhang, G.; Musgrave, C.B. Comparison of DFT methods for molecular orbital eigenvalue calculations. Journal of Physical Chemistry A 2007, 111, 1554–1561.
  • Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chemical Reviews 2005, 105, 2999–3093.
  • Canceès, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. Journal of Chemical Physics 1997, 107, 3032–3041.
  • Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K., Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S., Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q., Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B., Liu, G.; Liashenko, A., Piskorz, P., Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A., Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. Gaussian 03, Revision D.01, Gaussian, Inc. 2003.
  • Shao, Y.; Molnar, L.F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A.T.B.; Slipehenko, L.V.; Levehenko, S.V.; O’Neill, D.P.; DiStasio, R.A.; Jr., Lochan, R.C.; Wang, T., Beran, G.J.O.; Besley, N.A.; Herbert, J.M.; Lin, C.Y.; Van Voorhis, T.; Chien, S.H.; Sodt, A.; Steele, R.P.; Rassolov, V.A.; Maslen, P.E.; Korambath, P.P.; Adamson, R.D.; Austin, B.; Baker, J.; Byrd, E.F.C.; Dachsel, H.; Doerksen, R.J.; Dreuw, A.; Dunietz, B.D.; Dutoi, A.D.; Furlani, T.R.; Gwaltney, S.R.; Heyden, A.; Hirata, S.; Hsu, C.P.; Kedziora, G.; Khalliulin, R.Z.; Klunzinger, P.; Lee, A.M.; Lee, M. S.; Liang, W.Z.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E.I.; Pieniazek, P.A.; Rhee, Y.M.; Ritchie, J.; Rosta, E.; Sherrill, C.D.; Simmonett, A.C.; Subotnik, J.E.; Woodcock, H.L.; III, Zhang, W.; Bell, A.T.; Chakraborty, A.K.; Chipman, D.M.; Keil, F.J.; Warshel, A.; Hehre, W.J.; Schaefer, H.F.; Kong, J.; Krylov, A.I.; Gill., P.M.W.; Head-Gordon, M. Spartan, 10 Wavefunction, Inc. Physical Chemistry Chemical Physics 2006, 8, 3172–3191.
  • Russo, N.; Toscano, M.; Uccella, N. Semiempirical molecular modeling into quercetin reactive site: Structural, conformational, and electronic features. Journal of Agricultural and Food Chemistry 2000, 48, 3232–3237.
  • Trouillas, P.; Marsal, P.; Siri, D.; Lazzaroni, R.; Duroux, J.L. A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chemistry 2006, 97, 679–688.
  • Chiodo, S.G.; Leopoldini, M.; Russo, N.; Toscano, M. The inactivation of lipid peroxide radical by quercetin. A theoretical insight. Physical Chemistry Chemical Physics 2010, 12, 7662–7670.
  • Parkinson, C.J.; Mayer, P.M.; Radom L. Assessment of theoretical procedures for the calculation of reliable radical stabilization energies. Journal of the Chemical Society, Perkin Transactions 2 1999, 2305–2313.
  • Santos, R.M.B.; Simões, J.A.M. Standard enthalpies of formation of 2,6-di-tert-butyl-4-methylphenol and 3,5-di-tert-butylphenol and their phenoxy radicals. Journal of Physical and Chemical Reference Data 1998, 27, 707–741.
  • Jovanovic, S.V.; Steenken, S.; Tosic, M.; Marjanovic, B.; Simic, M.G. Flavonoids as antioxidants. Journal of the American Chemical Society 1994, 116, 4846–4851.
  • Jovanovic, S.V.; Steenken, S.; Hara, Y.; Simic, M.G. Reduction potentials of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible for antioxidant activity? Journal of the Chemical Society, Perkin Transactions 2 1996, 2497–2504.
  • Wang, L.F.; Zang, H.Y. Unexpected role of 5-OH in DPPH radical-scavenging activity of 4-thiaflavans. Bioorganic & Medicinal Chemistry Letters 2004, 14, 2609–2611.
  • Cao, H.; Pan, X.; Li, C.; Zhou, C.; Deng, F.; Li, T. Density functional theory calculations for resveratrol. Bioorganic & Medicinal Chemistry Letters 2003, 13, 1869–1871.
  • Sroka, Z. Antioxidative and antiradical properties of plant phenolics. Zeitschrift für Naturforschung 2005, 60c, 833–843.
  • Bors, W.; Michel, C. Antioxidant capacity of flavanols and gallate esters: Pulse radiolysis studies. Free Radical Biology and Medicine 1999, 27, 1413–1426.
  • Thavasi, V.; Leong, L.P.; Bettens, R.P.A. Investigation of the influence of hydroxyl groups on the radical scavenging ability of polyphenols. Journal of Physical Chemistry A 2006, 110, 4918–4923.
  • Sun, Y.M.; Zhang, H.Y.; Chen, D.Z.; Liu, C.B. Theoretical elucidation on the antioxidant mechanism of curcumin: A DFT study. Organic Letters 2002, 4, 2909–2911.
  • Wright. J.S. Predicting the antioxidant activity of curcumin and curcuminoids. Journal of Molecular Structure (Theochem) 2002, 591, 207–217.
  • Fujisawa, S.; Ishihara, M.; Murakami, Y.; Atsumi, T.; Kadoma, Y.; Yokoe, Y. Predicting the biological activities of 2-methoxyphenol antioxidants: Effects of dimers. In vivo 2007, 21, 181–188.
  • Murakami, Y.; Ishii, H.; Takada, N.; Tanaka, S.; Machino, M.; Ito, S.; Fujisawa, S. Comparative anti-inflammatory activities of curcumin and tetrahyrocurcumin based on the phenolic O-H bond dissociation enthalpy, ionization potential, and quantum chemical descriptor. Anticancer Research 2008, 28, 699–709.
  • Murakami, Y.; Ito, S.; Atsumi, T.; Fujisawa, S. Theoretical prediction of the relationship between phenol function COX-2/ AP-1 inhibition for ferulic acid related compounds. In vivo 2005, 19, 1039–1044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.