4,664
Views
90
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of Thermal Denaturation Structure and Morphology of Soy Glycinin by FTIR and SEM

, , , , &
Pages 763-774 | Received 14 Oct 2013, Accepted 21 Mar 2014, Published online: 20 Jan 2015

REFERENCES

  • Hojilla-Evangelista, M.P.; Sessa, D.J.; Mohamed, A. Functional properties of soybean lupin protein concentrates produced by ultrafiltration-diafiltration. Journal of the American Oil Chemists’ Society 2004, 81, 1153–1157.
  • Amigo-Benavent, M.; Silvan, J.M.; Moreno, F.J.; Villamiel, M.; del Castillo, M.D. Protein quality, antigenicity, and antioxidant activity of soy-based food stuffs. Journal of Agriculture and Food Chemistry 2008, 56 (15), 6498–6505.
  • Asif, A.; Imran, H.; Sara, A.; Tariq, M.; Nauman, K.; Anwaar, A. mechanisms involved in the therapeutic effects of soybean (glycine max). International Journal of Food Properties 2014, 17 (6), 1332–1354.
  • Sessa, D.J. Thermal denaturation of glycinin as a function of hydration. Journal of the American Oil Chemists’ Society 1993, 70 (12), 1279–1284.
  • Mills, E.N.C.; Huang, L.; Noel, T.R.; Gunning, A.P.; Morris, V.J. Formation of thermally induced aggregates of the soya globulin β-conglycinin. Biochimica et Biophysica Acta 2001, 1547 (2), 339–350.
  • Li, W.; Dobraszczyk, B.J.; Dias, A.; Gil, A.M. Polymer conformation structure of wheat proteins and gluten subfractions revealed by ATR-FTIR. Cereal Chemistry 2006, 83, 407–410.
  • Lakemond, C.M.M.; De Jongh, H.H.J.; Hessing, M.; Gruppen, H.; Voragen, A.G.J. Soy glycinin: Influence of pH and ionic strength on solubility and molecular structure at ambient temperatures. Journal of Agriculture and Food Chemistry 2000, 48, 1985–1990.
  • Adachi, M.; Takenaka, Y.; Gidamis, A.; Mikami, B.; Utsumi, S. Crystal structure of soybean proglycinin A1Ab1B homotrimer. Journal of Molecular Biological 2001, 305, 291–305.
  • Adachi, M.; Kanamori, J.; Masuda, T.; Yagasaki, K.; Kitamura, K.; Mikami, B.; Utsumi, S. Crystal structure of soybean 11S globulin: Glycinin A3B4 homohexamer. Proceedings of the National Academy of Sciences of the United States of America 2003, 100 (12), 7395–7400.
  • Rubio, L.A.; Grant, G.; Caballé, C.; Martinez-Aragon, A.; Pusztai, A. High in-vivo (rat) digestibility of faba bean (Vicia faba), lupin (Lupinus angustifolius), and soya bean (Glycine max) soluble globulins. Journal of Agriculture and Food Chemistry 1994, 66, 289–292.
  • Ker, Y.C.; Chen, R.H.; Wu, C.S. Relationships of secondary structure, microstructure, and mechanical properties of heat-induced gel of soy 11S golobulin. Bioscience Biotechnology and Biochemistry 1993, 57 (4), 536–541.
  • Mills, C.E.N.; Marigheto, N.A.; Wellner, N.; Fairhurst, S.A.; Jenkins, J.A.; Mann, R.; Belton, P.S. Thermally induced structural changes in glycinin, the 11S globulin of soya bean (glycine max)—An in situ spectroscopic study. Biochimica et Biophysica Acta 2003, 1648 (1), 105–114.
  • Pelton, J.T.; McLean, L.R. Spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry 2000, 27 (2), 167–176.
  • Chen, R.H.; Ker, Y.C.; Wu, C.S. Temperature and shear rate affecting the viscosity and secondary structural changes of soy 11S globulin measured by a cone-plate viscometer and Fourier transform infrared spectroscopy. Agriculture Biological & Chemistry 1990, 54 (5), 1165–1176.
  • Abbott, T.P.; Nabetani, H.; Sessa, D.J.; Wolf, W.J.; Liebman, M.N.; Dukor, R.K. Effects of bound water on FTIR spectra of glycinin. Journal of Agriculture and Food Chemistry 1996, 44, 2220–2224.
  • Lamia, L.; Joyce I.B.; Stéphanie, J. Ionic strength and pH-induced changes in the immunoreactivity of purified soybean glycinin and its relation to protein molecular structure. Journal of Agriculture and Food Chemistry 2007, 55, 5819–5826.
  • Nagano, T.; Hirotsuka, M.; Mori, H.; Kohyama, K.; Nishinari, K. Dynamic viscoelastic study on the gelation of 7S globulin from soybeans. Journal of Agriculture and Food Chemistry 1992, 40, 941–944.
  • Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartener, F.H.; Provenzano, M.D. Measurement of protein using bicinchoninic acid. Analytical Biochemistry 1985, 150, 76–85.
  • Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–686.
  • Souillac, P.O.; Middaugh, C.R.; Rytting, J.H. Investigation of protein/carbohydrate interactions in the dried state. 2. Diffuse reflectance FTIR studies. International Journal of Pharmaceutics 2002, 235, 207–218.
  • Saguer, E.; Alvarez, P.; Ismail, A.A. Heat-induced denaturation/aggregation of porcine plasma and its fractions studied by FTIR spectroscopy. Food Hydrocolloids 2012, 27, 208–219.
  • Chen, X.Y.; Ru, Y.; Chen, F.L.; Wang, X.C.; Zhao, X.Y.; Ao, Q. FTIR spectroscopic characterization of soy proteins obtained through AOT reverse micelles. Food Hydrocolloids 2013, 31, 435–437.
  • Ramirez, F.J.; Luque, P.; Heredia, A.; Bukovac, M.J. Fourier transform IR study of enzymatically isolated tomato fruit cuticular membrane. Biopolymers 1992, 32, 1425–1429.
  • Cakmak, G.; Togan, I.; Uduz, C.; Severcan, F. FT-IR spectroscopic analysis of rainbow trout liver exposed to nonylphenol. Applied Spectroscopy 2003, 57, 835–841.
  • Ayca, D.; Galip, S.; Feride, S. FTIR spectroscopic characterization of irradiated hazelnut (Corylus avellana L.). Food Chemistry 2007, 100, 1106–1114.
  • Zeng, H.Y.; Cai, L.H.; Cai, X.L.; Wang, Y.J.; Li, Y.Q. Structure characterization of protein fractions from lotus (Nelumbo nucifera) seed. Journal of Molecular Structure 2011, 1001, 139–144.
  • Kaddour, A.A.T.; Mondet, M.; Cuq, B. Description of chemical changes implied during bread dough mixing by FT-ATR mid-infrared spectroscopy. Cereal Chemistry 2008, 85, 673–678.
  • Jansen, T.; Knoester, C.J. A transferable electrostatic map for salvation effects on amide I vibrations and its application to linear and two dimensional spectroscopy. Journal of Chemistry Physical 2006, 124, 044–052.
  • Robertson, G.H.; Gregorski, K.S.; Cao, T.K. Changes in secondary protein structures during mixing development of high absorption (90%) flour and water mixtures. Cereal Chemistry 2006, 83, 136–142.
  • Kealley, C.S.; Rout, M.K.; Dezfouli, M.R.; Strounina, E.; Whittaker, A.K.; Appelqvist, I.A.M.; . . . Gidley, M.J. Structure and molecular mobility of soy glycinin in the solid state. Biomacromolecules 2008, 9, 2937–2946.
  • Catalina, D.; Cristiano, D.; Eloïse, L. Raman and IR spectroscopy of manganese superoxide dismutase, a pathology biomarker. Vibrational Spectroscopy 2012, 62, 50–58.
  • Sivakumar, S.; Sivasubramanian, J.; Raja, B. Aluminium induced structural, metabolic alterations, and protective effects of desferrioxamine in the brain tissue of mice: An FTIR study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2012, 99, 252–258.
  • Synytsyaa, J.; Čopíkováa, P.; Matějkab, V. Fourier transform Raman and infrared spectroscopy of pectins. Carbohydrate Polymers 2003, 54, 97–106.
  • Popineau, Y.; Bonenfant, S.; Cornec, M.; Pezolet, M. A study by infrared spectroscopy of the conformations of gluten proteins differing in their gliadin and glutenin compositions. Journal of Cereal Science 1994, 20, 15–22.
  • Lefevre, T.; Subirade, M. Formation of intermolecular beta-sheet structures: A phenomenon relevant to protein film structure at oil-water interfaces of emulsions, Journal of Colloid Interface Science 2003, 263, 59–67.
  • Qi, X.L.; Holt, C.; McNulty, D.; Clarke, D.T.; Brownlow, S.; Jones, G.R. Effect of temperature on the secondary structure of beta-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: A test of the molten globule hypothesis. Journal of Biochemistry 1997, 324, 341–346.
  • Colthup, N.B.; Daly, L.H.; Wiberley, S.E. Introduction to Infrared and Raman Spectroscopy, 2nd Ed; Academic Press: New York, NY, 1975.
  • Zhao, X.Y.; Chen, F.S.; Xue, W.T.; Li, L.T. FTIR spectra studies on the secondary structures of soybean 7S and 11S globulins using AOT reverse micellar extraction. Food Hydrocolloids 2008, 22, 568–575.
  • Thierry, L.; Muriel, S. Molecular structure and interation of viewed by fourier transform infrared spectroscopy: Models on β-lactoglobulin. Food Hydrocolloids 2001, 15, 365–376.
  • Liu, C.; Yang, X.Q.; Ijaz, A.; Tang, C.H.; Li, L.; Zhu, J.H.; Qi, J.R. Rheological properties of soybean β-conglycinin in aqueous dispersions: Effects of concentration, ionic strength, and thermal treatment. International Journal of Food Properties 2011, 14 (2), 264–279.
  • Carbonaro, M.; Cappelloni, M.; Nicoli, S.; Lucarini, M.; Carnovale, E. Solubility–Digestibility relationship of legume proteins. Journal of Agriculture and Food Chemistry 1997, 45, 3387–3394.
  • Barre, A.; Borges, J.P.; Rouge, P. Molecular modeling of the major peanut allergen Ara h 1 and other homotrimeric allergens of the cupin superfamily: A structural basis for their IgE-binding cross reactivity. Biochimie 2005, 87, 499–506.
  • Reddy, I.M.; Kella, N.K.D.; Kinsella, J.E. Structural and conformational basis of the resistance of β-lactoglobulin to peptic and chymotryptic digestion. Journal of Agriculture and Food Chemistry 1988, 36, 737–741.
  • Mickey, G.H.; Ekaterina, V.S.; Catherine, S.K.; Manoj K.R.; Jeffrey S.C.; Ingrid A.M.A.; . . . Elliot P.G. Effects of thermal denaturation on the solid-state structure and molecular mobility of glycinin. Biomacromolecules 2011, 12, 2092–2102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.