2,234
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Endosperm Structure and Physicochemical Properties of Starches from Normal, Waxy, and Super-Sweet Maize

, , , , &
Pages 2825-2839 | Received 18 Oct 2014, Accepted 01 Feb 2015, Published online: 12 Aug 2015

REFERENCES

  • Mendez-Montealvoa, G.; Wang, Y.J.; Campbell M. Thermal and Rheological Properties of Granular Waxy Maize Mutant Starches after β-Amylase Modification. Carbohydrate Polymers 2011, 83, 1106–1111.
  • Singh, N.; Kaur, A.; Shevkani, K. Maize: Grain Structure, Composition, Milling, and Starch Characteristics. In Maize: Nutrition Dynamics and Novel Uses; Chaudhary, D.P.; Kumar, S.; Langyan, S.; Eds.; Springer: India, 2014; 65–76.
  • Nelson, O.; Pan, D. Starch Synthesis in Maize Endosperm. Annual Review of Plant Physiology 1995, 46, 475–496.
  • Singh, N.; Sandhu, K.S.; Kaur, M. Physicochemical Properties Including Granular Morphology, Amylose Content, Swelling and Solubility, Thermal, and Pasting Properties of Starches from Normal, Waxy, High Amylose, and Sugary Corn. Progress in Food Biopolymer Research 2005, 1, 43–54.
  • Shannon, J.C.; Garwood, D.L. Genetics and Physiology of Starch Development. In Starch: Chemistry and Technology; Whistler, R.L.; BeMiller, J.N.; Paschall, E.F.; Eds.; Academic Press: New York, NY, 1984; 25–86.
  • Yuan, R.C.; Thompson, D.B.; Boyer, C.D. Fine Structure of Amylopectin in Relation to Gelatinization and Retrogradation Behavior of Maize Starches from Three wx-Containing Genotypes in Two Inbred Lines. Cereal Chemistry 1993, 70, 81–89.
  • Li, J.H.; Guiltinan, M.J.; Thompson, D.B. Mutation of the Maize sbe1a and ae genes Alters Morphology and Physical Behavior of wx-Type Endosperm Starch Granules. Carbohydrate Research 2007, 342, 2619–2627.
  • White, P.J.; Pollak, L.M.; Johnson, L.A. Starch-Thickened Acidic Foodstuffs and Method of Preparation. US Patent, Washington, DC, 1994; 5, 356, 655 pp.
  • Li, J.; Corke, H. Physicochemical Properties of Maize Starches Expressing Dull and Sugary-2 Mutants in Different Genetic Backgrounds. Journal of Agricultural and Food Chemistry 1999, 47, 4939–4943.
  • Hossain, F.; Nepolean, T.; Vishwakarma, A.K.; Pandey, N.; Prasanna, B.M.; Gupta, H.S. Mapping and Validation of Microsatellite Markers Linked to sugary1 and shrunken2 Gene in Maize (Zea mays L.). Journal of Plant Biochemistry and Biotechnology 2015, 24, 135–142.
  • Wang, B.; Wang, L.J.; Li, D.; Özkan, N.; Li, S.J.; Mao, Z. H. Rheological Properties of Waxy Maize Starch and Xanthan Gum Mixtures in the Presence of Sucrose. Carbohydrate Polymers 2009, 77, 472–481.
  • Miao, M.; Li, R.; Jiang, B.; Cui, S.W.; Lu, K.; Zhang, T. Structure and Digestibility of Endosperm Water-Soluble α-Glucans from Different Sugary Maize Mutants. Food Chemistry 2014, 143, 156–162.
  • Hao, X.Q.; Wu, Z.K. The Major Agronomic and Quality Characters in Double Recessive Sweet-Waxy Maize. Acta Agronomica Sinica 2003, 29, 321–329.
  • Wei, C.X.; Qin, F.L.; Zhou, W.D.; Xu, B.; Chen, C.; Chen, Y.F.; Wang, Y.P.; Gu, M.H.; Liu, Q.Q. Comparison of the Crystalline Properties and Structural Changes of Starches from High-Amylose Transgenic Rice and Its Wild Type during Heating. Food Chemistry 2011, 128, 645–652.
  • Wang, S.J.; Yu, J.L.; Zhu, Q.H.; Yu, J.G.; Jin, F.M. Granular Structure and Allomorph Position in C-Type Chinese Yam Starch Granule Revealed by SEM, 13C CP/MAS NMR and XRD. Food Hydrocolloids 2009, 23, 426–433.
  • Sevenou, O.; Hill, S.E.; Farhat, I.A.; Mitchell, J.R. Organisation of the External Region of the Starch Granule as Determined by Infrared Spectroscopy. Internal Journal of Biological Macromolecules 2002, 31, 79–85.
  • Atichokudomchai, N.; Varavinit, S.; Chinachoti, P. A study of Ordered Structure in Acid-Modified Tapioca Starch by 13C CP/MAS Solid-State NMR. Carbohydrate Polymers 2004, 58, 383–389.
  • Sivam, A.S.; Waterhouse, G.I.N.; Zujovic, Z.D.; Perera, C.O.; Sun-Waterhouse, D. Structure and Dynamics of Wheat Starch in Breads Fortified with Polyphenols and Pectin: An ESEM and Solid-State CP/MAS 13C NMR Spectroscopic Study. Food and Bioprocess Technology 2013, 6, 110–123.
  • Tan, I.; Flanagan, B.M.; Halley, P.J.; Whittaker, A.K.; Gidley, M.J. A Method for Estimating the Nature and Relative Proportions of Amorphous, Single, and Double-Helical Components in Starch Granules by 13C CP/MAS NMR. Biomacromolecules 2007, 8, 885–891.
  • Rangel-Meza, E.; Muñoz-Orozco, A.; Vázquez-Carrillo, G.; Cuevas-Sánchez, J.; Merino-Castillo, J.; Miranda-Colín, S. Alkaline Cooking, Preparation and Quality of Corn Tortilla from Ecatlan, Puebla, México. Agrociencia 2004, 38, 53–61.
  • Wang, D.; Eckhoff, S. R. Effect of Broken Corn Levels on Water Absorption and Steepwater Characteristics. Cereal Chemistry 2000, 77, 525–528.
  • Becraft, P.W. Cell Fate Specification in the Cereal Endosperm. Seminars in Cell & Developmental Biology 2001, 12, 387–394.
  • Shrestha, A.K.; Ng, C.S.; Lopez-Rubio, A.; Blazek, J.; Gilbert, E.P.; Gidley, M.J. Enzyme Resistance and Structural Organization in Extruded High Amylose Maize Starch. Carbohydrate Polymers 2010, 80, 699–710.
  • Baird, R.E.; Huber, D.M.; Mullinix, B.G. The Mycobiota from Seeds of Shrunken-2 (sh2) Sweet Corn. Mycopathologia 1996, 132, 147−154.
  • Morrison, W.R.; Law, R.V.; Snape, C.E. Evidence for Inclusion Complexes of Lipids with V-Amylose in Maize, Rice, and Oat Starches. Journal of Cereal Science 1993, 18, 107–109.
  • Cheetham, N.W.H.; Tao, L. Variation in Crystalline Type with Amylase Content in Maize Starch Granules: An X-Ray Powder Diffraction Study. Carbohydrate Polymers 1998, 36, 277–284.
  • Zhang, B.; Huang, Q.; Luo, F.X.; Fu, X. Structural Characterizations and Digestibility of Debranched High-Amylose Maize Starch Complexed with Lauric Acid. Food Hydrocolloids 2012, 28, 174–181.
  • Chang, F.D.; He, X.W.; Huang, Q. The Physicochemical Properties of Swelled Maize Starch Granules Complexed with Lauric Acid. Food Hydrocolloids 2013, 32, 365–372.
  • Singh, N.; Inouchi, N.; Nishinari, K. Structural, Thermal, and Viscoelastic Characteristics of Starches Separated from Normal, Sugary, and Waxy Maize. Food Hydrocolloids 2006, 20, 923–935.
  • Gao, H.M.; Cai, J.W.; Han, W.L.; Huai, H.Y.; Chen, Y.F.; Wei, C.X. Comparison of Starches Isolated from Three Different Trapa Species. Food Hydrocolloids 2014, 37, 174–181.
  • Van Soest, J.J.G.; Tournoisa, H.; Wit, D.; Vliegenthart, J.F.G. Short-Range Structure in (Partially) Crystalline Potato Starch Determined with Attenuated Total Reflectance Fourier-Transform IR Spectroscopy. Carbohydrate Research 1995, 279, 201–214.
  • Shingel, K.I. Determination of Structural Peculiarities of Dexran, Pullulan, and Gamma-Irradiated Pullulan by Fourier-Transform IR Spectroscopy. Carbohydrate Research 2002, 337, 1445–1451.
  • Fan, D.; Ma, W.R.; Wang, L.Y.; Huang, J.L.; Zhang, F.M.; Zhao, J.X.; Zhang, H.; Chen, W. Determining the effects of microwave heating on the ordered structures of rice starch by NMR. Carbohydrate Polymers 2013, 92, 1395–1401.
  • Snape, C.E.; Morrison, W.R.; Maroto-Valer, M.M.; Karkalas, J.; Pethrick, R.A. Solid State 13C NMR Investigation of Lipid Ligands in V-Amylose Inclusion Complexes. Carbohydrate Polymers 1998, 36, 225–237.
  • Morell, M.K.; Kosar-Hashemi, B.; Cmiel M.; Samuel, M.S.; Chandler, P.; Rahman, S.; Buleon, A.; Batey, I.L.; Li, Z. Barley sex 6 Mutants Lack Starch Synthase lla Activity and Contain a Starch with Novel Properties. Plant Journal 2003, 34, 172–184.
  • Blazek, J.; Copeland, L. Pasting and Swelling Properties of Wheat flour and Starch in Relation to Amylose Content. Carbohydrate Polymers 2008, 71, 380–387.
  • Singh, N.; Kaur, L.; Ezekiel, R.; Guraya, H.S. Microstructural, Cooking, and Textural Characteristics of Potato (Solanum tuberosum L.) Tubers in Relation to Physicochemical and Functional Properties of Their flours. Journal of the Science of Food and Agriculture 2005, 85, 1275–1284.
  • Ali, T.M.; Hasnain, A. Morphological, Physicochemical, and Pasting Properties of Modified White Sorghum (Sorghum bicolor) Starch. International Journal of Food Properties 2014, 17, 523−535.
  • Lindeboom, N.; Chang, P.R.; Tyler, R.T. Analytical, Biochemical, and Physicochemical Aspects of Starch Granule Size, with Emphasis on Small Granule Starches: A Review. Starch 2004, 56, 89–99.
  • Wongsagonsup, R.; Varavinit, S.; BeMiller, J.N. Increasing Slowly Digestible Starch Content of Normal and Waxy Maize Starches and Properties of Starch Products. Cereal Chemistry 2008, 85, 738–745.
  • Gujral, H.S.; Sharma, P.; Kaur H.; Singh, J. Physiochemical, Pasting, and Thermal Properties of Starch Isolated from Different Barley Cultivars. International Journal of Food Properties 2013, 16, 1494−1506.
  • Singh, S.; Singh, N.; Isono, N.; Noda, T. Relationship of Granule Size Distribution and Amylopectin Structure with Pasting, Thermal, and Retrogradation Properties in Wheat Starch. Journal of Agricultural and Food Chemistry 2010, 58, 1180–1188.
  • Matveev, Y.I.; van Soest, J.J.G.; Nieman, C.; Wasserman, L.A.; Protserov, V.A.; Ezernitskaja, M.; Yuryev, V.P. The Relationship Between Thermodynamic and Structural Properties of Low and High Amylose Maize Starches. Carbohydrate Polymers 2001, 44, 151–160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.