7,905
Views
110
CrossRef citations to date
0
Altmetric
Reviews

Milk Derived Antimicrobial Bioactive Peptides: A Review

, , , , &
Pages 837-846 | Received 30 Apr 2015, Accepted 01 May 2015, Published online: 16 Dec 2015

REFERENCES

  • Gobbetti, M.; Stepaniak, L.; De Angelis, M.; Corsetti, A.; Di Cagno, R. Latent Bioactive Peptides in Milk Proteins: Proteolytic Activation and Significance in Dairy Processing. Critical Reviews in Food Science and Nutrition 2002, 42 (3), 223–239.
  • Martin, E.; Ganz, T.; Lehrer, R.I. Defensins and Other Endogenous Peptide Antibiotics of Vertebrates. Journal of Leukocyte Biology 1995, 58 (2), 128–136.
  • Wang, Z.; Wang, G. APD: The Antimicrobial Peptide Database. Nucleic Acids Research 2004, 32 (1), 590–592.
  • Zasloff, M. Magainins, a Class of Amps from Xenopus Skin-Isolation, Characterization of Two Active Forms, and Partial cDNA Sequence of a Precursor. Proceedings of the National Academy of Sciences USA 1987, 84 (15), 5449–5453.
  • Steiner, H.; Hultmark, D.; Engström, A.; Bennich, H.; Boman, H.G. Sequence and Specificity of Two Anti-Bacterial Proteins Involved in Insect Immunity. Nature 1981, 292 (5820), 246–248.
  • Wang, Z.; Wang, G. APD: The Antimicrobial Peptide Database. Nucleic Acids Research 2004, 32, D590–D592.
  • FitzGerald, R.J.; Meisel, H. Milk Protein Hydrolysates and Bioactive Peptides. Advanced Dairy Chemistry 2003, 1 (3), 675–698.
  • Pihlanto, A.; Korhonen, H. Bioactive Peptides and Proteins. Advances in Food Nutrition Research 2003, 47 (4), 175–276.
  • Boutrou, R.; Gaudichon, C.; Dupont, D.; Jardin, J.; Airinei, G.; Marsset-Baglieri, M.; Benamouzig, R.; Tomé, D.; Leonil, J. Sequential Release of Milk Protein-Derived Bioactive Peptides in the Jejunum in Healthy Humans. American Journal of Clinical Nutrition 2013, 97, 1314–1323.
  • Cunliffe, R.N.; Mahida, Y.R. Expression and Regulation of Antimicrobial Peptides in the Gastrointestinal Tract. Journal of Leukocyte Biology 2004, 75 (1), 49–58.
  • Hancock, R.E.W.; Chapple, D.S. Peptide Antibiotics. Antimicrobial Agents and Chemotherapy 1999, 43 (6), 1317–1323.
  • Elsbach, P. What is the Real Role of Antimicrobial Polypeptides That Can Mediate Several Other Inflammatory Responses? Journal of Clinical Investigation 2003, 111 (11), 1643–1645.
  • Yang, D.; Biragyn, A.; Kwak, L.W.; Oppenheim, J.J. Mammalian Defensins in Immunity: More Than Just Microbicidal. Trends in Immunology 2002, 23 (6), 291–296.
  • Nissen-Meyer, J.; Nes, I.F. Ribosomally Synthesized Antimicrobial Peptides: Their Function, Structure Biogenesis, and Mechanism of Action. Archives of Microbiology 1997, 167 (2–3), 67–77.
  • Hancock, R.E.; Diamond, G. The Role of Cationic Antimicrobial Peptides in Innate Host Defenses. Trends in Microbiology 2000, 8 (9), 402–410.
  • Territo, M.C.; Ganz, T.; Selsted, M.E.; Lehrer, R. Monocytechemotactic Activity of Defensins from Human Neutrophils. Journal of Clinical Investigation 1989, 84 (6), 2017–2020.
  • Davidson, D.J.; Currie, A.J.; Reid, G.S.; Bowdish, D.M.; MacDonald, K.L.; Ma, R.C.; Hancock, R.E.; Speert, D.P. The Cationic Antimicrobial Peptide LL-37 Modulates Dendritic Cell Differentiation and Dendritic Cell Induced T Cell Polarization. The Journal of Immunology 2004, 172 (2), 1146–1156.
  • Chertov, O.; Michiel, D.F.; Xu, L.; Wang, J.M.; Tani, K.; Murphy, W.J.; Longo, D.L.; Taub, D.D.; Oppenheim, J.J. Identification of Defensin-1, Defensin-2, and CAP37/ Azurocidin As T-Cell Chemoattractant Proteins Released from Interleukin-8-Stimulated Neutrophils. Journal of Biological Chemistry 1996, 271 (6), 2935–2940.
  • Mookherjee, N.; Wilson, H.L.; Doria, S.; Popowych, Y.; Falsafi, R.; Yu, J.J.; Li, Y.; Veatch, S.; Roche, F.M.; Brown, K.L.; Brinkman, F.S.; Hokamp, K.; Potter, A.; Babiuk, L.A.; Griebel, P.J.; Hancock, R.E. Bovine and Human Cathelicidin Cationic Host Defense Peptides Similarly Suppress Transcriptional Responses to Bacterial Lipopolysaccharide. Journal of Leukocyte Biology 2006, 80 (6), 1563–1574.
  • Bals, R.; Weiner, D.J.; Moscioni, A.D.; Meegalla, R.L.; Wilson, J.M. Augmentation of Innate Host Defense by Expression of a Cathelicidin Antimicrobial Peptide. Infection and Immunity 1999, 67 (11), 6084–6089.
  • Brown, K.L.; Hancock, R.E. Cationic Host Defense (Antimicrobial) Peptides. Current Opinion in Immunology 2006, 18 (1), 24–30.
  • Dziuba, B.; Dziuba, M. Milk Proteins—Derived Bioactive Peptides in Dairy Products: Molecular, Biological, and Methodological Aspects. Acta Scientiarum Polonorum Technologia Alimentaria 2014, 13 (1), 5–25.
  • Gobbetti, M.; Rizzello, C.G.; Di Cagno, R.; De Angelis, M. Sourdough Lactobacilli and Celiac Disease. Food Microbiology 2007, 24 (2), 187–196.
  • Hafeez, Z.; Cakir-Kiefer, C.; Roux, E.; Perrin, C.; Miclo, L.; Dary-Mourot, A. Strategies of Producing Bioactive Peptides from Milk Proteins to Functionalize Fermented Milk Products. Food Research International 2014, 63, 71–80.
  • Korhonen, H.; Pihlanto, A. Food-Derived Bioactive Peptides Opportunities for Designing Future Foods. Current Pharmaceutical Design 2003a, 9 (16), 1297–1308.
  • Korhonen, H.; Pihlanto, A. Bioactive Peptides: Novel Applications for Milk Proteins. Applied Biotechnology Food Science and Policy 2003b, 1 (3), 133–144.
  • Meisel, H.; FitzGerald, R.J. Biofunctional Peptides from Milk Proteins: Mineral Binding and Cytomodulatory Effects. Current Pharmaceutical Design 2003, 9 (16), 1289–1295.
  • Yamamoto, N.; Ejiri, M.; Mizuno, S. Biogenic Peptides and Their Potential Use. Current Pharmaceutical Design 2003, 9 (16), 1345–1355.
  • Lopez-Exposito, I.; Recio, I. Antibacterial Activity of Peptides and Folding Variants from Milk Proteins. International Dairy Journal 2006, 16 (11), 1294–1305.
  • Korhonen, H.; Pihlanto-Leppa¨la, A. Milk Protein-Derived Bioactive Peptides–Novel Opportunities for Health Promotion. International Dairy Federation Bulletin 2001, 363 (7), 17–26.
  • Korhonen, H.; Pihlanto, A. Bioactive Peptides: Production and Functionality. International Dairy Journal 2006, 16 (9), 945–960.
  • Christensen, J.E.; Dudley, E.G.; Pederson, J.A.; Steele, J.L. Peptidases and Amino Acid Catabolism in Lactic Acid Bacteria. Antonie van Leeuwenhoek 1999, 76 (1–4), 217–246.
  • Lahov, E.; Regelson, W. Antibacterial and Immunostimulating Casein-Derived Substances from Milk: Casecidin, Isracidin Peptides. Food Chemical Toxicology 1999, 34, 131–145.
  • Murakami, K.; Lagarde, M.; Yuki, Y. Identification of Minor Proteins of Human Colostrum and Mature Milk by Two-Dimensional Electrophoresis. Electrophoresis 1998, 19 (14), 2521–2527.
  • Yamada, M.; Murakami, K.; Wallingford, J.C.; Yuki, Y. Identification of Low-Abundance Proteins of Bovine Colostral and Mature Milk Using Two-Dimensional Electrophoresis Followed by Microsequencing and Mass Spectrometry. Electrophoresis 2002, 23 (7–8), 1153–1160.
  • Haque, E.; Chand, R. Antihypertensive and Antimicrobial Bioactive Peptides from Milk Proteins. European Food Research and Technology 2008, 227 (1), 7–15.
  • Pisano, A.; Packer, N.H.; Redmond, J.W.; Williams, K.L.; Gooley, A.A. Characterization of O-Linked Glycosylation Motifs in the Glycopeptide Domain of Bovine κ-Casein. Glycobiology 1984, 4 (6), 837–844.
  • Thoma-Worringer, C.; Sorensen, J.; Lopez-Fandino, R. Health Effects and Technological Features of Caseinomacropeptide. International Dairy Journal 2006, 16 (11), 1324–1333.
  • Tidona, F.; Criscione, A.; Guastella, A.M. Bioactive Peptides in Dairy Products. Italian Journal of Animal Science 2009, 8 (3), 315–340.
  • Malkoski, M.; Dashper, S.G.; O’brien-Simpson, N.M.; Talbo, G.H.; Macris, M.; Cross, K.J.; Reynolds, E.C. Kappacin, a Novel Antibacterial Peptide from Bovine Milk. Antimicrobial Agents and Chemotherapy 2001, 45 (8), 2309–2315.
  • Jones, F.S.; Simms, H.S. The Bacterial Growth Inhibitor (Lactenin) of Milk. The Journal of Experimental Medicine 1930, 51 (2), 327–339.
  • Zucht, H.D.; Raida, M.; Adermann, K.; Magert, H.J.; Forssmann, W.G. Casocidin-I: A Casein-αs2 Derived Peptide Exhibits Antibacterial Activity. FEBS Letters 1995, 372 (2–3), 185–188.
  • Gill, H.S.; Rutherford, K.J.; Cross, M.L. Bovine Milk: A Unique Source of Immunomodulatory Ingredients for Functional Foods. In Functional Foods II–Claims and Evidence; Buttriss, J.; Saltmarsh, M.; Eds.; Royal Society of Chemistry Press: Cambridge, England, 2000; 82–90 pp.
  • Rodriguez, D.A.; Vazquez, L.; Ramos, G. Antimicrobial Mechanisms and Potential Clinical Application of Lactoferrin [in Spanish]. Revista Latinoamericana de Microbiología 2005, 47 (3–4), 102–111.
  • Ward, P.P.; Paz, E.; Conneely, O.M. Multifunctional Roles of Lactoferrin: A Critical Overview. Cellular and Molecular Life Sciences 2005, 62 (22), 2540–2548.
  • Gifford, J.L.; Hunter, H.N.; Vogel, H.J. Lactoferricin: A Lactoferrin-Derived Peptide with Antimicrobial, Antiviral, Antitumor, and Immunological Properties. Cellular and Molecular Life Sciences 2005, 62 (22), 2588–2598.
  • Meisel, H.; Bockelmann, W. Bioactive Peptides Encrypted in Milk Proteins: Proteolytic Activation and Trophy-Functional Properties. Antonie van Leeuwenhoek 1999, 76 (1–4), 207–215.
  • Vogel, H.J.; Schibli, D.J.; Jing, W.; Lohmeier-Vogel, E.M.; Epand, R.F.; Epand, R.M. Towards a Structure-Function Analysis of Bovine Lactoferricin and Related Tryptophan- and Arginine-Containing Peptides. Biochemistry and Cell Biology 2002, 80 (1), 49–63.
  • Farnaud, S.; Evans, R.W. Lactoferrin—A Multifunctional Protein with Antimicrobial Properties. Molecular Immunology 2005, 40 (7), 395–405.
  • Van der Kraan, M.I.A.; Groenink, J.; Nazmi, K.; Veerman, E.C.I.; Bolscher, J.G.M.; Nieuw Amerongen, A.V. Lactoferrampin: A Novel Antimicrobial Peptide in the N1-Domain of Bovine Lactoferrin. Peptides 2004, 25 (2), 177–183.
  • Pellegrini, A.; Dettling, C.; Thomas, U.; Hunziker, P. Isolation and Characterization of Four Bactericidal Domains in the Bovine α-Lactoglobulin. Biochimica et Biophysica Acta 2001, 1526 (2), 131–140.
  • Pellegrini, A.; Thomas, U.; Bramaz, N.; Hunziker, P.; Von Fellenberg, R. Isolation and Identification of Three Bactericidal Domains in the Bovinen α-Lactalbumin Molecule. Biochimica et Biophysica Acta 1999, 1426 (3), 439–448.
  • Wang, X.F.; Cao, R.M.; Li, J.; Wu, J.; Wu, S.M.; Chen, T.X. Identification of Socio Demographic and Clinical Factors Associated with the Levels of Human-Defensin-1 and Human-Defensin-2 in the Human Milk of Han Chinese. British Journal of Nutrition 2014, 111, 867–874.
  • Hakansson, P.A. Protective Effects of Human Milk Antimicrobial Peptides Against Bacterial Infection. Jornal de Pediatria 2015, 91 (1), 4–5.
  • Kumari., S.; Vij, S. Effect of Bioactive Peptides Derived from Fermented Whey Based Drink Against Food Borne Pathogens. International Journal of Current Microbiology and Applied Science 2015, 4 (3), 936–941.
  • Huang, Y.; Huang, J.; Chen, Y. Alpha-Helical Cationic Antimicrobial Peptides: Relationships of Structure and Function. Protein Cell 2010, 1 (2), 143–152.
  • Hancock, R.E.W. Peptide Antibiotics. The Lancet 1997, 349 (9049), 418–422.
  • Oren, Z.; Hong, J.; Shai, Y. A Comparative Study on the Structure and Function of a Cytolytic Alpha-Helical Peptide and Its Antimicrobial Beta-Sheet Diastereomer. European Journal of Biochemistry 1999, 259, 360–369.
  • Van, T.; Hof, W.; Veerman, E.C.; Helmerhorst, E.J.; Amerongen, A.V. Antimicrobial Peptides: Properties and Applicability. Biological Chemistry 2001, 382 (4), 597–619.
  • Ben-Efraim, I.; Shai, Y. The Structure and Organization of Synthetic Putative Membranous Segments of ROMK1 Channel in Phospholipid Membranes. Biophysical Journal 1997, 72 (1), 85–96.
  • He, K.; Ludtke, S.J.; Worcester, D.L.; Huang, H.W. Neutron Scattering in the Plane of Membranes: Structure of Alamethicin Pores. Biophysical Journal 1996, 70 (6), 2659–2666.
  • Oren, Z.; Shai, Y. Mode of Action of Linear Amphipathic ɑ-Helical Antimicrobial Peptides. Biopolymers 1998, 47 (6), 451–463.
  • Sengupta, D.; Leontiadou, H.; Mark, A.E.; Marrink, S.J. Toroidal Pores Formed by Antimicrobial Peptides Show Significant Disorder. Biochimica et Biophysica Acta 2008, 1778 (10), 2308–2317.
  • Hancock, R.E.W.; Chapple, D.S. Peptide Antibiotics. Antimicrobial Agents and Chemotherapy 1999, 43 (6), 1317–1323.
  • Kondejewski, L.H.; Jelokhani-Niaraki, M.; Farmer, S.W.; Lix, B.; Kay, C.M.; Sykes, B.D.; Hancock, R.E.W.; Hodges, R.S. Dissociation of Antimicrobial and Hemolytic Activities in Cyclic Peptide Diastereomers by Systematic Alterations in Amphipathicity The Journal of Biological Chemistry 1999, 274 (19), 13181–13192.
  • Chanput, W.; Nakai, S.; Theerakulkait, C. Introduction of New Computer Software for Classification and Prediction Purposes of Bioactive Peptides: Case Study in Antioxidative Tripeptides. International Journal of Food Properties 2010, 13, 947–959.
  • Liepke, C.; Zucht, H.D.; Forssmann, W.G.; Standker, L. Purification of Novel Peptide Antibiotics from Human Milk. Journal of Chromatography B 2001, 752, 369–377.
  • Adoui, F.; Boughera, F.; Chataigne, G.; Chihib, N.E.; Hameur, H.E.I.; Dhulster, P.; Zidoune, M.N.; Nedjar-Arroume, N. A Simple Method to Separate the Antimicrobial Peptides from Complex Peptic Casein Hydrolysate and Identification of a Novel Antibacterial Domains Within the Sequence of Bovine αs-Casein. International Review of Chemical Engineering 2013, 5 (2), 179–187.
  • Ivanova, I.; Kabadjova, P.; Pantev, A.; Danova, S.; Dousset, X. Detection, Purification and Partial Characterization of a Novel Bacteriocin Substance Produced by Lactococcus lactis subsp. lactis B14 Isolated from Boza—Bulgarian Traditional Cereal Beverage. Biocatalysis—2000: fundamentals & Applications 2000, 41 (6), 47–53.
  • Brede, D.A.; Faye, T.; Johnsborg, O.; Odegard, I.; Nes, I.F.; Holo, H. Molecular and Genetic Characterization of Propionicin F, a Bacteriocin from Propionibacterium freudenreichii. Applied Environmental Microbiology 2004, 70 (12), 7303–7310.
  • Todorov, S.D.; Van Reenen, C.A.; Dicks, L.M. Optimization of Bacteriocin Production by Lactobacillus plantarum ST13BR, a Strain Isolated from Barley Beer. The Journal of General and Applied Microbiology 2004, 50 (3), 149–157.
  • Ravi Sankar, N.; Deepthi Priyanka, V.; Srinivas Reddy, P.; Rajanikanth, P.; Kiran Kumar, V.; Indira, M. Purification and Characterization of Bacteriocin Produced by Lactobacillus plantarum Isolated from Cow Milk. International Journal of Microbiology Research 2012, 3 (2), 133–137.
  • Fujita, K.; Ichimasa, S.; Zendo, T.; Koga, S.; Yoneyama, F.; Nakayama, J.; Sonomoto, K. Structural Analysis and Characterization of Lacticin Q, a Novel Bacteriocin Belonging to a New Family of Unmodified Bacteriocins of Gram Positive Bacteria. Applied Environmental Microbiology 2007, 73 (9), 2871–2877.
  • Tahiri, I.; Desbiens, M.; Benech, R.; Kheadr, E.; Lacroix, C.; Thibault, S.; Ouellet, D.; Fliss, I. Purification, Characterization, and Amino Acid Sequencing of Divergicin M35: A Novel Class IIa Bacteriocin Produced by Carnobacterium divergens M35. International Journal of Food Microbiology 2004, 97 (2), 123–136.
  • Adam,V.; Zitka, O.; Dolezal, P.; Zeman, L.; Horna, A.; Hubalek, J.; Sileny, J.; Krizkova, S.; Trnkova, L.; Kizek, R. Lactoferrin Isolation Using Monolithic Column Coupled with Spectrometric or Micro-Amperometric Detector. Sensors 2008, 8 (1), 464–487.
  • Hill, R.D.; Lahov, E.; Givol, D. A Rennin-Sensitive Bond in αs1 B-Casein. Journal of Dairy Research 1974, 41, 147–153.
  • Forssmann, W.G.; Zucht, H.D.; Raida, M.; Adermann, K.; Magert, H.J. Antibiotic Peptides from Bovine Milk. United States Patent 657984917; June 17, 2003.
  • McCann, K.B.; Shiell, B.J.; Michalski, W.P.; Lee, A.; Wan, J.; Roginski, H.; Coventry, M.J. Isolation and Characterization of Antibacterial Peptides Derived from the f(164-207) Region of Bovine αs2-Casein. International Dairy Journal 2005, 15 (12), 133–143.
  • Lopez-Exposito, I.; Gomez-Ruiz, J.A.; Amigo, L.; Recio, I. Identification of Antibacterial Peptides from Bovine αs2-Casein. International Dairy Journal 2006a, 16 (9), 1072–1080.
  • Lopez-Exposito, I.; Minervini, F.; Amigo, L.; Recio, I. Identification of Antibacterial Peptides from Bovine Kappa Casein. Journal of Food Protection 2006b, 69 (12), 2992–2997.
  • Malkoski, M.; Dashper, S.G.; O’Brien-Simpson, N.M.; Talbo, G.H.; Macris, M.; Cross, K.J.; Reynolds, E.C. Kappacin, a Novel Antibacterial Peptide from Bovine Milk. Antimicrobial Agents and Chemotherapy 2001, 45 (8), 2309–2315.
  • Bellamy, W.R.; Yamauchi, K.; Wakabayashi, H.; Takase, M.; Shimamura, S.; Tomita, M. Antifungal Properties of Lactoferricin, a Peptide Derived from the N-Terminal Region of Bovine Lactoferrin. Letters in Applied Microbiology 1994, 18 (4), 230–233.
  • Shin, K.; Yamauchi, K.; Teraguchi, S.; Hayasawa, H.; Tomita, M.; Otsuka, Y.; Yamazaki, S. Antibacterial Activity of Bovine Lactoferrin and Its Peptides Against Enterohaemorrhagic Escherichia coli 0157:H7. Letters in Applied Microbiology 1998, 6, 407–411.
  • Tomita, M.; Bellamy, W.R.; Takase, M.; Yamauchi, K.; Wakabayashi, H.; Kawase, K. Potent Antibacterial Peptides Generated by Pepsin Digestion of Bovine Lactoferrin. Journal of Dairy Science 1991, 74 (12), 4137–4142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.