7,937
Views
69
CrossRef citations to date
0
Altmetric
Reviews

Nano- and Micro-Particles by Nanoprecipitation: Possible Application in the Food and Agricultural Industries

, , , , , & show all
Pages 1912-1923 | Received 03 May 2015, Accepted 28 Aug 2015, Published online: 26 May 2016

REFERENCES

  • Azeem, B.; KuShaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on Materials and Methods to Produce Controlled Release Coated Urea Fertilizer. Journal of Controlled Release 2014, 181, 11–21.
  • Blasco, C.; Pico, Y. Determining Nanomaterials in Food. TrAC Trends in Analytical Chemistry 2011, 30 (1), 84–99.
  • Bilati, U.; Allémann, E.; Doelker, E. Development of a Nanoprecipitation Method Intended for the Entrapment of Hydrophilic Drugs into Nanoparticles. European Journal of Pharmaceutical Sciences 2005, 24 (1), 67–75.
  • Shakeri, F.; Shakeri, S.; Hojjatoleslami, M. Preparation and Characterization of Carvacrol Loaded Polyhydroxybutyrate Nanoparticles by Nanoprecipitation and Dialysis Methods. Journal of Food Science 2014, 79 (4), N697–N705.
  • Mora-Huertas, C.E.; Garrigues, O.; Fessi, H.; Elaissari, A. Nanocapsules Prepared Via Nanoprecipitation and Emulsification–Diffusion Methods: Comparative Study. European Journal of Pharmaceutics and Biopharmaceutics 2012, 80 (1), 235–239.
  • Fessi, H.P.F.D.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule Formation by Interfacial Polymer Deposition Following Solvent Displacement. International Journal of Pharmaceutics 1989, 55 (1), R1–R4.
  • Zhang, C.; Pansare, V.J.; Prud’Homme, R.K.; Priestley, R.D. Flash Nanoprecipitation of Polystyrene Nanoparticles. Soft Matter 2012, 8 (1), 86–93.
  • Morales-Cruz, M.; Flores-Fernández, G.M.; Morales-Cruz, M.; Orellano, E.A.; Rodriguez-Martinez, J.A.; Ruiz, M.; Griebenow, K. Two-Step Nanoprecipitation for the Production of Protein-Loaded PLGA Nanospheres. Results in Pharma Sciences 2012, 2, 79–85.
  • Kumari, A.; Yadav, S.K. Nanotechnology in Agri-Food Sector. Critical Reviews in Food Science and Nutrition 2014, 54 (8), 975–984.
  • Chen, H.; Seiber, J.N.; Hotze, M. ACS Select on Nanotechnology in Food and Agriculture: A Perspective on Implications and Applications. Journal of Agricultural and Food Chemistry 2014, 62 (6), 1209–1212.
  • Joye, I.J.; McClements, D.J. Production of Nanoparticles by Anti-Solvent Precipitation for Use in Food Systems. Trends in Food Science & Technology 2013, 34 (2), 109–123.
  • Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation Techniques for Food Bioactive Components: A Review. Food and Bioprocess Technology 2013, 6 (3), 628–647.
  • Sripriyalakshmi, S.; Jose, P.; Ravindran, A.; Anjali, C.H. Recent Trends in Drug Delivery System Using Protein Nanoparticles. Cell Biochemistry and Biophysics 2014, 70 (1), 17–26.
  • Bonifácio, B.V.; da Silva, P.B.; dos Santos Ramos, M.A.; Negri, K.M.S.; Bauab, T.M.; Chorilli, M. Nanotechnology-Based Drug Delivery Systems and Herbal Medicines: A Review. International Journal of Nanomedicine 2014, 9, 1–15.
  • Weiss, J.; Takhistov, P.; McClements, D.J. Functional Materials in Food Nanotechnology. Journal of Food Science 2006, 71 (9), R107–R116.
  • Joye, I.J.; Davidov-Pardo, G.; McClements, D.J. Nanotechnology for Increased Micronutrient Bioavailability. Trends in Food Science & Technology 2014, 40 (2), 168–182.
  • Kuhlbusch, T.A.; Asbach, C.; Fissan, H.; Göhler, D.; Stintz, M. Nanoparticle Exposure at Nanotechnology Workplaces: A Review. Particle and Fibre Toxicology 2011, 8 (1), 22.
  • Sanguansri, P.; Augustin, M.A. Nanoscale Materials Development–A Food Industry Perspective. Trends in Food Science & Technology 2006, 17 (10), 547–556.
  • Jyothi, N.V.N.; Prasanna, P.M.; Sakarkar, S.N.; Prabha, K.S.; Ramaiah, P.S.; Srawan, G.Y. Microencapsulation Techniques, Factors Influencing Encapsulation Efficiency. Journal of Microencapsulation 2010, 27 (3), 187–197.
  • Cushen, M.; Kerry, J.; Morris, M.; Cruz-Romero, M.; Cummins, E. Nanotechnologies in the Food Industry–Recent Developments, Risks, and Regulation. Trends in Food Science & Technology 2012, 24 (1), 30–46.
  • Aschenbrenner, E.; Bley, K.; Koynov, K.; Makowski, M.; Kappl, M.; Landfester, K.; Weiss, C.K. Using the Polymeric Ouzo Effect for the Preparation of Polysaccharide-Based Nanoparticles. Langmuir 2013, 29 (28), 8845–8855.
  • Reis, C.P.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F. Nanoencapsulation I. Methods for Preparation of Drug-Loaded Polymeric Nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine 2006, 2 (1), 8–21.
  • Vauthier, C.; Bouchemal, K. Methods for the Preparation and Manufacture of Polymeric Nanoparticles. Pharmaceutical Research 2009, 26 (5), 1025–1058.
  • Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Letters 2010, 10 (9), 3223–3230.
  • Rosas, J.E.; Pedraz, J.L. PLGA Microspheres: A System for the Controlled Release of Molecules with Immunogenic Activity. Colombian Journal of Chemistry-Pharmaceutical Sciences 2007, 36 (2), 134–153.
  • Phillips, D.J.; Patterson, J.P.; O’Reilly, R.K.; Gibson, M.I. Glutathione-Triggered Disassembly of Isothermally Responsive Polymer Nanoparticles Obtained by Nanoprecipitation of Hydrophilic Polymers. Polymer Chemistry 2014, 5 (1), 126–131.
  • Mishra, D.; Hubenak, J.R.; Mathur, A.B. Nanoparticle Systems As Tools to Improve Drug Delivery and Therapeutic Efficacy. Journal of Biomedical Materials Research Part A 2013, 101 (12), 3646–3660.
  • Matalanis, A.; Jones, O.G.; McClements, D.J. Structured Biopolymer-Based Delivery Systems for Encapsulation, Protection, and Release of Lipophilic Compounds. Food Hydrocolloids 2011, 25 (8), 1865–1880.
  • Lassalle, V.; Ferreira, M.L. PLA Nano‐and Microparticles for Drug Delivery: An Overview of the Methods of Preparation. Macromolecular Bioscience 2007, 7 (6), 767–783.
  • Charcosset, C.; El-Harati, A.; Fessi, H. Preparation of Solid Lipid Nanoparticles Using a Membrane Contactor. Journal of Controlled Release 2005, 108 (1), 112–120.
  • Fathi, M.; Mozafari, M.R.; Mohebbi, M. Nanoencapsulation of Food Ingredients Using Lipid Based Delivery Systems. Trends in Food Science & Technology 2012, 23 (1), 13–27.
  • Habib, S.M.; Amr, A.S.; Hamadneh, I.M. Nanoencapsulation of Alpha-Linolenic Acid with Modified Emulsion Diffusion Method. Journal of the American Oil Chemists’ Society. 2012, 89 (4), 695–703.
  • Ochekpe, N.A.; Olorunfemi, P.O.; Ngwuluka, N.C. Nanotechnology and Drug Delivery Part 2: Nanostructures for Drug Delivery. Tropical Journal of Pharmaceutical Research 2009, 8 (3), 275–287.
  • Zambrano-Zaragoza, M.L.; Mercado-Silva, E.; Gutiérrez-Cortez, E.; Castaño-Tostado, E.; Quintanar-Guerrero, D. Optimization of Nanocapsules Preparation by the Emulsion–Diffusion Method for Food Applications. LWT–Food Science and Technology 2011, 44 (6), 1362–1368.
  • Souguir, H.; Salaün, F.; Douillet, P.; Vroman, I.; Chatterjee, S. Nanoencapsulation of Curcumin in Polyurethane and Polyurea Shells by An Emulsion Diffusion Method. Chemical Engineering Journal 2013, 221, 133–145.
  • Surassmo, S.; Min, S.G.; Bejrapha, P.; Choi, M.J. Effects of Surfactants on the Physical Properties of Capsicum Oleoresin-Loaded Nanocapsules Formulated Through the Emulsion–Diffusion Method. Food Research International 2010, 43 (1), 8–17.
  • Quintanar-Guerrero, D.; Ganem-Quintanar, A.; Allémann, E.; Fessi, H.; Doelker, E. Influence of the Stabilizer Coating Layer on the Purification and Freeze-Drying of Poly (D, L-Lactic Acid) Nanoparticles Prepared by An Emulsion-Diffusion Technique. Journal of Microencapsulation 1998, 15 (1), 107–119.
  • Steinhilber, D.; Witting, M.; Zhang, X.; Staegemann, M.; Paulus, F.; Friess, W.; Küchler, S.; Haag, R. Surfactant Free Preparation of Biodegradable Dendritic Polyglycerol Nanogels by Inverse Nanoprecipitation for Encapsulation and Release of Pharmaceutical Biomacromolecules. Journal of Controlled Release 2013, 169 (3), 289–295.
  • Esmaeili, A.; Bahrami, S. Effects of the Extraction Phase of Citrus L. Growing in Iran, Loaded in Oil-to-Water Nanocapsules Prepared by the Interfacial Polymerization Method. International Journal of Food Properties 2015, 18 (4), 714–724.
  • Dasgupta, N.; Ranjan, S.; Mundra, S.; Ramalingam, C.; Kumar, A. Fabrication of Food Grade Vitamin E Nanoemulsion by Low Energy Approach, Characterization, and Its Application. International Journal of Food Properties 2015, 19 (3), 1–21.
  • Moshfeghi, A.A.; Peyman, G.A. Micro-and Nanoparticulates. Advanced Drug Delivery Reviews 2005, 57 (14), 2047–2052.
  • Yoncheva, K.; Lizarraga, E.; Irache, J.M. Pegylated Nanoparticles Based on Poly (Methyl Vinyl Ether-Co-Maleic Anhydride): Preparation and Evaluation of Their Bioadhesive Properties. European Journal of Pharmaceutical Sciences 2005, 24 (5), 411–419.
  • Chin, S.F.; Pang, S.C.; Tay, S.H. Size Controlled Synthesis of Starch Nanoparticles by a Simple Nanoprecipitation Method. Carbohydrate Polymers 2011, 86 (4), 1817–1819.
  • Gavory, C.; Durand, A.; Six, J.L.; Nouvel, C.; Marie, E.; Leonard, M. Polysaccharide-Covered Nanoparticles Prepared by Nanoprecipitation. Carbohydrate Polymers 2011, 84 (1), 133–140.
  • Roy, A.; Singh, S.K.; Bajpai, J.; Bajpai, A.K. Controlled Pesticide Release from Biodegradable Polymers. Central European Journal of Chemistry 2014, 12 (4), 453–469.
  • Kingsley, J.D.; Dou, H.; Morehead, J.; Rabinow, B.; Gendelman, H.E.; Destache, C.J. Nanotechnology: A Focus on Nanoparticles As a Drug Delivery System. Journal of Neuroimmune Pharmacology 2006, 1 (3), 340–350.
  • Gulfam, M.; Kim, J.E.; Lee, J.M.; Ku, B.; Chung, B.H.; Chung, B.G. Anticancer Drug-Loaded Gliadin Nanoparticles Induce Apoptosis in Breast Cancer Cells. Langmuir 2012, 28 (21), 8216–8223.
  • van Vlerken, L.E.; Vyas, T.K.; Amiji, M.M. Poly (Ethylene Glycol)-Modified Nanocarriers for Tumor-Targeted and Intracellular Delivery. Pharmaceutical Research 2007, 24 (8), 1405–1414.
  • Kumar, V.D.; Verma, P.R.P.; Singh, S.K. Development and Evaluation of Biodegradable Polymeric Nanoparticles for the Effective Delivery of Quercetin Using a Quality by Design Approach. LWT–Food Science and Technology 2015, 61 (2), 330–338.
  • Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids and Surfaces B: Biointerfaces 2010, 75 (1), 1–18.
  • Mozafari, M.R.; Khosravi-Darani, K.; Borazan, G.G.; Cui, J.; Pardakhty, A.; Yurdugul, S. Encapsulation of Food Ingredients Using Nanoliposome Technology. International Journal of Food Properties 2008, 11 (4), 833–844.
  • Kastner, T.; Rivas, M.J.I.; Koch, W.; Nonhebel, S. Global Changes in Diets and the Consequences for Land Requirements for Food. Proceedings of the National Academy of Sciences 2012, 109 (18), 6868–6872.
  • Castro-Enríquez, D.D.; Rodríguez-Félix, F.; Ramírez-Wong, B.; Torres-Chávez, P.I.; Castillo-Ortega, M.M.; Rodríguez-Félix, D.E.; Armenta-Villegas, L.; Ledesma-Osuna, A.I. Preparation, Characterization, and Release of Urea from Wheat Gluten Electrospun Membranes. Materials 2012, 5 (12), 2903–2916.
  • Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for Nano-Biotechnology Enabled Protection and Nutrition of Plants. Biotechnology Advances 2011, 29 (6), 792–803.
  • Blanco-Padilla, A.; Soto, K.M.; Hernández Iturriaga, M.; Mendoza, S. Food Antimicrobials Nanocarriers. The Scientific World Journal 2014, 1–11.
  • Berti, F.; Todros, S.; Lakshmi, D.; Whitcombe, M.J.; Chianella, I.; Ferroni, M.; Piletsky, S.A.; Turner, A.P.F.; Marrazza, G. Quasi-Monodimensional Polyaniline Nanostructures for Enhanced Molecularly Imprinted Polymer-Based Sensing. Biosensors and Bioelectronics 2010, 26 (2), 497–503.
  • Pérez-López, B.; Merkoçi, A. Nanomaterials Based Biosensors for Food Analysis Applications. Trends in Food Science & Technology 2011, 22 (11), 625–639.
  • Kayaci, F.; Ertas, Y.; Uyar, T. Enhanced Thermal Stability of Eugenol by Cyclodextrin Inclusion Complex Encapsulated in Electrospun Polymeric Nanofibers. Journal of Agricultural and Food Chemistry 2013, 61 (34), 8156–8165.
  • Antiochia, R.; Gorton, L.; Mannina, L. Rapid Determination of Sucrose in Fruit Juices: A New Sensitive Carbon Nanotube Paste Osmium-Polymer Mediated Biosensor. Journal of Food Research 2014, 3 (4), 101–112.
  • Zhang, C.; Yin, A.X.; Jiang, R.; Rong, J.; Dong, L.; Zhao, T.; Sun, L.D.; Wang, J.; Chen, X.; Yan, C.H. Time–Temperature Indicator for Perishable Products Based on Kinetically Programmable Ag Overgrowth on Au Nanorods. ACS Nano 2013, 7 (5), 4561–4568.
  • Peters, R.; ten Dam, G.; Bouwmeester, H.; Helsper, H.; Allmaier, G.; vd Kammer, F.; Ramsch, R.; Solans, C.; Tomaniová, M.; Hajslova, J.; Weigel, S. Identification and Characterization of Organic Nanoparticles in Food. TrAC Trends in Analytical Chemistry 2011, 30 (1), 100–112.
  • Sozer, N.; Kokini, J.L. Nanotechnology and Its Applications in the Food Sector. Trends in Biotechnology 2009, 27 (2), 82–89.
  • Noronha, C.M.; Granada, A.F.; de Carvalho, S.M.; Lino, R.C.; de O.B. Maciel, M.V.; Barreto, P.L.M. Optimization of α-Tocopherol Loaded Nanocapsules by the Nanoprecipitation Method. Industrial Crops and Products 2013, 50, 896–903.
  • Aubry, J.; Ganachaud, F.; Cohen Addad, J.P.; Cabane, B. Nanoprecipitation of Polymethylmethacrylate by Solvent Shifting: 1. Boundaries. Langmuir 2009, 25 (4), 1970–1979.
  • Lepeltier, E.; Bourgaux, C.; Couvreur, P. Nanoprecipitation and the “Ouzo Effect:” Application to Drug Delivery Devices. Advanced Drug Delivery Reviews 2014, 71, 86–97.
  • Beck-Broichsitter, M.; Rytting, E.; Lebhardt, T.; Wang, X.; Kissel, T. Preparation of Nanoparticles by Solvent Displacement for Drug Delivery: A Shift in the “Ouzo Region” Upon Drug Loading. European Journal of Pharmaceutical Sciences 2010, 41 (2), 244–253.
  • Mugheirbi, N.A.; Paluch, K.J.; Tajber, L. Heat Induced Evaporative Antisolvent Nanoprecipitation (HIEAN) of Itraconazole. International Journal of Pharmaceutics 2014, 471 (1), 400–411.
  • Roger, K.; Eissa, M.; Elaissari, A.; Cabane, B. Surface Charge of Polymer Particles in Water: The Role of Ionic End-Groups. Langmuir 2013, 29 (36), 11244–11250.
  • Chidambaram, M.; Krishnasamy, K. Modifications to the Conventional Nanoprecipitation Technique: An Approach to Fabricate Narrow Sized Polymeric Nanoparticles. Advanced Pharmaceutical Bulletin 2014, 4 (2), 205.
  • Lucas, P.; Vaysse, M.; Aubry, J.; Mariot, D.; Sonnier, R.; Ganachaud, F. Finest Nanocomposite Films from Carbon Nanotube-Loaded Poly (Methyl Methacrylate) Nanoparticles Obtained by the Ouzo Effect. Soft Matter 2011, 7 (12), 5528–5531.
  • Luo, C.J.; Okubo, T.; Nangrejo, M.; Edirisinghe, M. Preparation of Polymeric Nanoparticles by Novel Electrospray Nanoprecipitation. Polymer International 2015, 64 (2), 183–187.
  • Liu, Y.; Lu, Y.C.; Luo, G.S. Modified Nanoprecipitation Method for Polysulfone Nanoparticles Preparation. Soft Matter 2014, 10 (19), 3414–3420.
  • Cheng, J.C.; Vigil, R.D.; Fox, R.O. A Competitive Aggregation Model for Flash Nanoprecipitation. Journal of Colloid and Interface Science 2010, 351 (2), 330–342.
  • Legrand, P.; Lesieur, S.; Bochot, A.; Gref, R.; Raatjes, W.; Barratt, G.; Vauthier, C. Influence of Polymer Behaviour in Organic Solution on the Production of Polylactide Nanoparticles by Nanoprecipitation. International Journal of Pharmaceutics 2007, 344 (1), 33–43.
  • Rao, J.P.; Geckeler, K.E. Polymer Nanoparticles: Preparation Techniques and Size-Control Parameters. Progress in Polymer Science 2011, 36 (7), 887–913.
  • de Oliveira, A.M.; Jäger, E.; Jäger, A.; Stepánek, P.; Giacomelli, F.C. Physicochemical Aspects Behind the Size of Biodegradable Polymeric Nanoparticles: A Step Forward. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 436, 1092–1102.
  • Galindo-Rodriguez, S.; Allemann, E.; Fessi, H., Doelker, E. Physicochemical Parameters Associated with Nanoparticle Formation in the Salting-Out, Emulsification-Diffusion, and Nanoprecipitation Methods. Pharmaceutical Research 2004, 21 (8), 1428–1439.
  • Govender, T.; Stolnik, S.; Garnett, M.C.; Illum, L.; Davis, S.S. PLGA Nanoparticles Prepared by Nanoprecipitation: Drug Loading and Release Studies of a Water Soluble Drug. Journal of Controlled Release 1999, 57 (2), 171–185.
  • Chambon, S.; Schatz, C.; Sébire, V.; Pavageau, B.; Wantz, G.; Hirsch, L. Organic Semiconductor Core–Shell Nanoparticles Designed Through Successive Solvent Displacements. Materials Horizons 2014, 1 (4), 431–438.
  • Velázquez, D.L.A.; Chávez, M.A.; Castro, R.R.; Gutiérrez, P.Y.; Galindo, R.S.A. Encapsulation of Clotrimazole in Polymeric Nanoparticles by Nanoprecipitation Technique. Congreso Internacional de QFB. Revista de Salud Pública y Nutrición 2009, 1, 1–16.
  • Peltonen, L.; Aitta, J.; Hyvönen, S.; Karjalainen, M.; Hirvonen, J. Improved Entrapment Efficiency of Hydrophilic Drug Substance During Nanoprecipitation of Poly (I) Lactide Nanoparticles. AAPS PharmSciTech 2004, 5 (1), 115–120.
  • Álvarez Román, R.; Cavazos Rodríguez, M.R.; Chavéz Montes, A.; Castro Ríos, R.; Waksman de Torres, N.; Salazar Cavazos, M.D.L.L.; Galindo Rodríguez, S.A. Formulation and Characterization of Nanocapsules with a Natural Antioxidant for Cutaneous Application. Química Hoy Chemistry Sciences 2012, 1 (4), 29–35.
  • Shi, W.; Zhang, Z.J.; Yuan, Y.; Xing, E.M.; Qin, Y.; Peng, Z.J.; Zhang, Z.P.; Yang, K.Y. Optimization of Parameters for Preparation of Docetaxel-Loaded PLGA Nanoparticles by Nanoprecipitation Method. Journal of Huazhong University of Science and Technology [Medical Sciences] 2013, 33, 754–758.
  • Teng, Z.; Luo, Y.; Wang, T.; Zhang, B.; Wang, Q. Development and Application of Nanoparticles Synthesized with Folic Acid Conjugated Soy Protein. Journal of Agricultural and Food Chemistry 2013, 61 (10), 2556–2564.
  • Kim, S.; Kim, Y.S. Production of Gliadin-Poly (Ethyl Cyanoacrylate) Nanoparticles for Hydrophilic Coating. Journal of Nanoparticle Research 2014, 16 (2), 1–10.
  • He, W.; Lu, Y.; Qi, J.; Chen, L.; Hu, F.; Wu, W. Food Proteins As Novel Nanosuspension Stabilizers for Poorly Water-Soluble Drugs. International Journal of Pharmaceutics 2013, 441 (1), 269–278.
  • Yan, X.; Delgado, M.; Fu, A.; Alcouffe, P.; Gouin, S.G.; Fleury, E.; Katz, J.L.; Ganachaud, F.; Bernard, J. Simple But Precise Engineering of Functional Nanocapsules Through Nanoprecipitation. Angewandte Chemie 2014, 126 (27), 7030–7033.
  • Lebouille, J.G.J.L.; Stepanyan, R.; Slot, J.J.M.; Stuart, M.C.; Tuinier, R. Nanoprecipitation of Polymers in a Bad Solvent. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 460, 225–235.
  • Moorthi, C.; Kathiresan, K. Fabrication of Highly Stable Sonication Assisted Curcumin Nanocrystals by Nanoprecipitation Method. Drug Invention Today 2013, 5 (1), 66–69.
  • He, Y.; Huang, Y.; Cheng, Y. Structure Evolution of Curcumin Nanoprecipitation from a Micromixer. Crystal Growth & Design 2010, 10 (3), 1021–1024.
  • Sah, E.; Sah, H. Recent Trends in Preparation of Poly (Lactide-co-Glycolide) Nanoparticles by Mixing Polymeric Organic Solution with Anti-solvent. Journal of Nanomaterials 2015, 61, 1–22.
  • Schubert, S.; Delaney Jr, J.T.; Schubert, U.S. Nanoprecipitation and Nanoformulation of Polymers: From History to Powerful Possibilities Beyond Poly (Lactic Acid). Soft Matter 2011, 7 (5), 1581–1588.
  • Xie, H.; Smith, J.W. Fabrication of PLGA Nanoparticles with a Fluidic Nanoprecipitation System. Journal of Nanobiotechnology 2010, 8 (1), 18.
  • Hornig, S.; Heinze, T.; RemziáBecer, C.; Schubert, U.S. Synthetic Polymeric Nanoparticles by Nanoprecipitation. Journal of Materials Chemistry 2009, 19 (23), 3838–3840.
  • Joye, I.J.; Nelis, V.A.; McClements, D.J. Gliadin-Based Nanoparticles: Stabilization by Post-Production Polysaccharide Coating. Food Hydrocolloids 2015, 43, 236–242.
  • Margulis, K.; Magdassi, S.; Lee, H.S.; Macosko, C.W. Formation of Curcumin Nanoparticles by Flash Nanoprecipitation from Emulsions. Journal of Colloid and Interface Science 2014, 434, 65–70.
  • Pustulka, K.M.; Wohl, A.R.; Lee, H.S.; Michel, A.R.; Han, J.; Hoye, T.R.; McCormick, A.V.; Panyam, J.; Macosko, C.W. Flash Nanoprecipitation: Particle Structure and Stability. Molecular Pharmaceutics 2013, 10 (11), 4367–4377.
  • Khan, S.A.; Schneider, M. Nanoprecipitation Versus Two Step Desolvation Technique for the Preparation of Gelatin Nanoparticles. Proceedings in SPIE BiOS. San Francisco, USA. 85950H-85950H, 2013.
  • Botet, R. The “Ouzo Effect,” Recent Developments and Application to Therapeutic Drug Carrying. Journal of Physics-Conference Series 2012, 352 (1), 1–10.
  • Santander-Ortega, M.J.; Stauner, T.; Loretz, B.; Ortega-Vinuesa, J.L.; Bastos-González, D.; Wenz, G.; Schaefer, U.F.; Lehr, C.M. Nanoparticles Made from Novel Starch Derivatives for Transdermal Drug Delivery. Journal of Controlled Release 2010, 141 (1), 85–92.
  • Campos, E.V.R.; de Oliveira, J.L.; Fraceto, L.F.; Singh, B. Polysaccharides As Safer Release Systems for Agrochemicals. Agronomy for Sustainable Development 2015, 35 (1), 47–66.
  • Arangoa, M.A.; Campanero, M.A.; Popineau, Y.; Irache, J.M. Electrophoretic Separation and Characterisation of Gliadin Fractions from Isolates and Nanoparticulate Drug Delivery Systems. Chromatographia 1999, 50 (3–4), 243–246.
  • Arangoa, M.A.; Ponchel, G.; Orecchioni, A.M.; Renedo, M.J.; Duchene, D.; Irache, J.M. Bioadhesive Potential of Gliadin Nanoparticulate Systems. European Journal of Pharmaceutical Sciences 2000, 11 (4),333–341.
  • Duclairoir, C.; Orecchioni, A.M.; Depraetere, P.; Osterstock, F.; Nakache, E. Evaluation of Gliadins Nanoparticles As Drug Delivery Systems: A Study of Three Different Drugs. International Journal of Pharmaceutics 2003, 253 (1), 133–144.
  • Fajardo, P.; Balaguer, M.P.; Gomez-Estaca, J.; Gavara, R.; Hernandez-Munoz, P. Chemically Modified Gliadins As Sustained Release Systems for Lysozyme. Food Hydrocolloids 2014, 41, 53–59.
  • Kim, S. Production of Composites by Using Gliadin As a Bonding Material. Journal of Cereal Science 2011, 54 (1),168–172.
  • Mauguet, M.C.; Legrand, J.; Brujes, L.; Carnelle, G.; Larre, C.; Popineau, Y. Gliadin Matrices for Microencapsulation Processes by Simple Coacervation Method. Journal of Microencapsulation 2002, 19 (3), 377–384.
  • Noronha, C.M.; de Carvalho, S.M.; Lino, R.C.; Barreto, P.L.M. Characterization of Antioxidant Methylcellulose Film Incorporated with α-Tocopherol Nanocapsules. Food Chemistry 2014, 159, 529–535.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.