8,889
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Comparative Nutritional, Functional, Morphological, and Diffractogram Study on Culinary Banana (Musa ABB) Peel at Various Stages of Development

&
Pages 2832-2853 | Received 14 Sep 2015, Accepted 09 Jan 2016, Published online: 26 Aug 2016

REFERENCES

  • Zhang, P.; Whistler, R.L.; BeMiller, J.N.; Hanaker, B.R. Banana Starch: Production, Physicochemical Properties, and Digestibility—A Review. Carbohydrate Polymers 2005, 59(4), 443–458.
  • Wanlapa, S.; Wachirasiri, K.; Sithisam-ang, D.; Suwannatup, T. Potential of Selected Tropical Fruit Peels As Dietary Fiber in Functional Foods. International Journal of Food Properties 2015, 18(6), 1306–1316.
  • Khawas, P.; Das, A.J.; Dash, K.K.; Deka, S.C. Thin-Layer Drying Characteristics of Kachkal Banana Peel (Musa ABB) of Assam, India. International Food Research Journal 2014, 21(3), 1011–1018.
  • Khawas, P.; Dash, K.K.; Das, A.J.; Deka, S.C. Drying Characteristics and Assessment of Physicochemical and Microstructural Properties of Dried Culinary Banana Slices. International Journal of Food Engineering 2015, 11(5), 667–678.
  • Emaga, T.H.; Andrianaivo, R.H.; Watheletet, B.; Tahnago, J.T.; Paquot, M. Effects of the Stage of Maturation and Varieties on the Chemical Composition of Banana and Plantain Peels. Food Chemistry 2007, 103(2), 590–600.
  • Essien, J.P.; Akpan, E.J.; Essien, E.P. Studies on Mould Growth and Biomass Production Using Waste Banana Peel. Bioresource Technology 2005, 96(13), 1451–1455.
  • Ashraf, A.M.; Maah, J.M.; Yusoff, I. Batchwise Biosorption of Sn2+ Ions by Using Chemically Treated Banana Peel. Research Journal of Biotechnology 2012, 7(3), 81–87.
  • Emaga, T.H.; Robert, C.; Ronkart, S.N.; Wathelet, B.; Paquot, M. Dietary Fiber Components and Pectin Chemical Features of Peels During Ripening in Banana and Plantain Varieties. Bioresource Technology 2008, 99(10), 4346–43454.
  • Khawas, P.; Deka, S.C. Isolation and Characterization of Cellulose Nanofibers from Culinary Banana Peel Using High-Intensity Ultrasonication Combined with Chemical Treatment. Carbohydrate Polymers 2016, 137, 608–616.
  • Nguyen, T.B.T.; Ketsa, S.; Van Doorn, W.G. Relationship Between Browning and the Activities of Polyphenol Oxidase and Phenylalanine Ammonia Lyase in Banana Peel During Low Temperature Storage. Postharvest Biology and Technology 2003, 30(2), 187–193.
  • A.O.A.C. Association of Official Analytical Chemists Official Methods of Analysis of the Association of Official Analytical Chemists, 18th Ed; AOAC International: Washington, DC, 2010.
  • Hodge, J.E.; Hofreiter, B.T. Carbohydrates. In Methods in Carbohydrate Chemistry; Whistler R.L.; Miller, J.N.B.; Ed.; Academic Press: New York, NY, 1962; 17–22.
  • Sadasivam, S.; Manickam, A. Biochemical Methods, 3rd Ed; New Age International Publishers: New Delhi, India, 2008.
  • Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determinations of Sugar and Related Substances. Analytical Chemistry 1956, 28(3), 350–356.
  • Somogyi, M. Notes on Sugar Determination. Journal of Biological Chemistry 1952, 195, 19–23.
  • Stafford, H.A. Differences Between Lignin Like Polymer Formed by Peroxidation of Eugenol and Ferulic Acid in Leaf Section of Phleum. Plant Physiology 1960, 35(1), 108–114.
  • Ranganna, S. Handbook of Analysis and Quality Control for Fruit and Vegetable Products, 2nd Ed.; Tata McGraw-Hill Publishing Ltd.: New Delhi, India, 2008.
  • Schanderi, S.H. Method in Food Analysis; Academic Press: New York, NY, 1970.
  • Bray, H.G.; Thorpe, W.V. Analysis of Phenolic Compounds of Interest in Metabolism. Methods in Biochemical Analysis 1954, 1, 27–52.
  • Sultana, B.; Anwar, F.; Asi, M.R.; Chatha, S.A.S. Antioxidant Potential of Extracts from Different Agro Wastes: Stabilization of Corn Oil. Grasas y Aceites 2008, 59(3), 205–217.
  • Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT–Food Science and Technology 1995, 28(1), 25–30.
  • Naozuka, J.; Vieira, C.E.; Nascimento, N.A.; Oliveira, V.P. Elemental Analysis of Nuts and Seeds by Axially Viewed ICP OES. Food Chemistry 2011, 124(4), 1667–1672.
  • Kumar, N.; Bhandari, P.; Singh, B.; Gupta, A.P.; Kaul, V.K. Reversed Phase-HPLC for Rapid Determination of Polyphenols in Flowers of Rose Species. Journal of Separation Science 2008, 31(2), 262–267.
  • Khawas, P.; Das, A.J.; Sit, N.; Badwaik, L.S.; Deka, S.C. Nutritional Composition of Culinary Musa ABB at Different Stages of Development. American Journal of Food Science and Technology 2014, 2(3), 80–87.
  • Fernandes, K.M.; Carvalho, V.D.; Cal-Vidal, J. Physical Changes During Ripening of Silver Banana. Journal of Food Science 1979, 44(4), 1254–1255.
  • Singh, R.R.; Sharma, R.M. Structure, Cellular Components, and Composition of Fruits and Vegetables. In Postharvest Technology of Fruits and Vegetables; Verma, L.R.; Joshi, V.K.; Eds.; Indus Publ. Co.: New Delhi, India, 2000; 76–93.
  • Adisa, V.A.; Okey, E.N. Carbohydrate and Protein Composition of Banana Pulp and Peel as Influenced by Ripening and Mold Contamination. Food Chemistry 1987, 25(2), 85–91.
  • Goswami, B.; Borthakur, A. Chemical and Biochemical Aspects of Developing Culinary Banana (Musa ABB) “Kachkal. ” Food Chemistry 1996, 55(2), 169–172.
  • Kaiser, C.; Wolstenholme, B.N. Aspects of Delayed Harvest of “Hass” Avocado (Persea Americana Mill.) Fruit in Cool Subtropical Climate. I. Fruit Lipid and Fatty Acid Accumulation. Journal of Horticultural Science and Biotechnology 1994, 69(3), 437–445.
  • Siddika, A.; Md, A.; Khatun, S.; Khan, M.M.H.; Pervin, F. Changes in Contents of Some Chemical Compositions and Activities of Hydrolytic and Oxidative Enzymes of Coccinia Cordifolia L. Fruits. Journal of Bioscience 2013, 21, 35–41.
  • Anhwange, B.A. Chemical Composition of Musa Sapientum (Banana) Peels. Journal of Food Technology 2008, 6(6), 263–266.
  • Adeniji, T.A.; Barimalaa, I.S.; Tenkouano, A.; Sanni, L.O.; Hart, A.D. Antinutrients and Heavy Metals in New Nigerian Musa Hybrid Peels with Emphasis on Utilization in Livestock Production. Fruits 2008, 63(2), 65–73.
  • Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary Fibre in Foods: A Review. Journal of Food Science and Technology 2012, 49(3), 255–266.
  • Sakyi-Dawson, E.; Asamoah-Bonti, P.; Annor, G.A. Biochemical Changes in New Plantain and Cooking Banana Hybrids at Various Stages of Ripening. Journal of the Science of Food Agriculture 2008, 88(15), 2724–2729.
  • Cordenunsi, B.R.; Lajolo, F.M. Starch Breakdown During Banana Ripening: Sucrose Synthase and Sucrose Phosphate Synthase. Journal of Agricultural and Food Chemistry 1995, 43(2), 347–351.
  • James, M.G.; Denyer, K.; Myers, A.M. Starch Synthesis in the Cereal Endosperm. Current Opinion in Plant Biology 2003, 6(3), 215–222.
  • Emaga, T.H.; Bindelle, J.; Agneesens, R.; Buldgen, A.; Wathelet, B.; Paquot, M. Ripening Influences Banana and Plantain Peels Composition and Energy Content. Tropical Animal Health and Production 2011, 43(1), 171–177.
  • Punna, R.; Paruchuri, U.R. Effect of Maturity and Processing on Total, Insoluble, and Soluble Dietary Fiber Contents of Indian Green Leafy Vegetables. International Journal of Food Science and Nutrition 2004, 55(7), 561–567.
  • Scheller, V.H.; Ulvskov, P. Hemicelluloses. Annual Review of Plant Biology 2010, 61, 263–289.
  • Cosgrove, J.D. Plant Cell Growth and Elongation. In Encyclopedia of Life Sciences. Wiley Online Library. John Willey & Sons: New York, NY, 2014. DOI:10.1038/npg.els.0001688.
  • Pilnik, W. Pectin—A Many Splendored Thing. In Gums and Stabilizers for the Food Industry 5; Phillips, G.O.; Williams, P.A.; Wedlock, D.J.; Eds.; IRL Press: Oxford, UK, 1990; 209–222.
  • Lohani, S.; Trivedi, P.K.; Nath, P. Changes in Activities of Cell Wall Hydrolases During Ethylene-induced Ripening in Banana: Effect of 1-MCP, ABA, and IAA. Postharvest Biology and Technology 2004, 31(2), 119–126.
  • Bugaud, C.; Alter, P.; Daribo, M.O.; Brioullet, J.M. Comparison of the Physicochemical Characteristics of a New Triploid Banana Hybrid, FLHORBAN 920, and the Cavendish Variety. Journal of the Science of Food and Agriculture 2009, 89, 407–413.
  • Ashraf, A.M.; Maah, J.M.; Yusoff, I.; Mahmood, K.; Wajid, A. Study of Antioxidant Potential of Tropical Fruits. International Journal of Bioscience, Biochemistry, and Bioinformatics 2011, 1(1), 53–57.
  • Pandey, K.B.; Rizvi, S.I. Plant Polyphenols As Dietary Antioxidants in Human Health and Disease. Oxidative Medicine and Cellular Longevity 2009, 2(5), 270–278.
  • Delfanian, M.; Kenari, R.E.; Sahari, M.A. Antioxidant Activity of Loquat (Eriobotrya Japonica Lindl.) Fruit Peel and Pulp Extracts in Stabilization of Soybean Oil During Storage Conditions. International Journal of Food Properties 2015, 18(12), 2813–2824.
  • Kiyoshi, M.; Wahachiro, T. Change in Polyphenol Compound in Banana Pulp During Ripening. Food Preservation Science 2003, 29(6), 347–351.
  • Sundaram, S.; Anjum, S.; Dwivedi, P.; Rai, G.K. Antioxidant Activity and Protective Effect of Banana Peel Against Oxidative Hemolysis of Human Erythrocyte at Different Stages of Ripening. Applied Biochemistry and Biotechnology 2011, 164(7), 1192–1206.
  • Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and ProOxidant Behaviour of Flavonoids: Structure Activity Relationships. Free Radical Biology and Medicine 1997, 22(5), 749–760.
  • Choi, S.H.; Ahn, J.B.; Kim, H.J.; Im, N.K.; Kozukue, N.; Levin, C.E.; Friedman, M. Changes in Free Amino Acid, Protein, and Flavonoid Content in Jujube (Ziziphus Jujube) Fruit During Eight Stages of Growth and Antioxidative and Cancer Cell Inhibitory Effects by Extracts. Journal of Agricultural and Food Chemistry 2012, 60, 10245–10255.
  • Gull, J.; Sultana, B., Anwar, F.; Naseer, R.; Ashraf, M.; Ashrafuzzaman, M. Variation in Antioxidant Attributes at Three Ripening Stages of Guava (Psidium Guajava L.) Fruit from Different Geographical Regions of Pakistan. Molecules 2012, 17(31), 65–3180.
  • Jimenez, A.; Creissen, G.; Kular, B.; Firmin, J.; Robinson, S.; Verhoeyen, M.; Mullineaux, P. Changes in Oxidative Processes and Components of the Antioxidant System During Tomato Fruit Ripening. Planta 2002, 214(5), 751–758.
  • Del Rio, L.A.; Pastori, G.M.; Palma, J.M.; Sandalio, L.M.; Sevilla, F.; Corpas, F.J.; Jiménez, A.; López-Huertas, E.; Hernández, J.A. The Activated Oxygen Role of Peroxisomes in Senescence. Update on Biochemistry. Plant Physiology 1998, 116, 1195–1200.
  • John, P.; Marchal, L. Ripening and Biochemistry of the Fruit. In Bananas and Plantains; Gowen, S.; Ed.; Chapman and Hall: London, 1995; 434–467.
  • Marschner, H. Mineral Nutrition of Higher Plants, 2nd Ed; Academic Press: New York, NY, 1995; 278–290.
  • Rop, O.; Sochor, J.; Jurikova, T.; Zitka, O.; Skutkova, H.; Mlcek, J.; Salas, P.; Krska, B.; Babula, P.; Adam, V.; Kramarova, D.; Beklova, M.; Provaznik, I.; Kizek, R. Effect of Five Different Stages of Ripening on Chemical Compounds in Medlar (Mespilus Germanica L.). Molecules 2010, 16(1), 74–91.
  • Herbert, D-H.; Carlos, B-F.; Augusto, R-B. Effect of Two Levels of Ripe Banana Peel on Milk Production by Dairy Cattle. Agronomía Costarricense 1998, 22(1), 43–49.
  • Ramadan, M.F.; Morsel, J.T. Neutral Lipids Classes of Black Cumin (Nigella Sativa L.) Seed Oils. European Food Research and Technology 2002, 214(3), 202–206.
  • Simmonds, N.W. Bananas, 2nd Ed; Longmans: London, UK, 1966.
  • Gibson, L.; Rupasinghe, V.H.P.; Charles, F.F.; Eaton, L. Characterization of Changes in Polyphenols, Antioxidant Capacity, and Physicochemical Parameters During Low Bush Blueberry Fruit Ripening. Antioxidants 2013, 2, 216–229.
  • Thirumavalavan, M.; Lai, Y.-L.; Lee, J.-F. Fourier Transform Infrared Spectroscopic Analysis of Fruit Peels Before and After the Adsorption of Heavy Metal Ions from Aqueous Solution. Journal of Chemical and Engineering Data 2011, 56, 2249–2255.
  • Sun, J.X.; Xu, F.; Sun, X.F.; Xiao, B.; Sun, R.C. Physicochemical and Thermal Characterization of Cellulose from Barley Straw. Polymer Degradation and Stability 2005, 88(3), 521–531.
  • Fan, D.; Ma, W.; Wang, L.; Huang, J.; Zhao, J.; Zhang, H.; Chen, W. Determination of Structural Changes in Microwaved Rice Starch Using Fourier Transform Infrared and Raman Spectroscopy. Starch/Stärke 2012, 64(8), 598–606.
  • Zeng, J.; Li, G.; Goa, H.; Ru, Z. Comparison of A and B Starch Granules from Three Wheat Varieties. Molecules 2011, 16, 10570–10591.
  • Sanchez-Rivera, M.M.; Flores-Ramirez, I.; Zamudio-Flores, P.B.; Gonzalez-Soto, R.A.; Rodriguez-Ambriz, S.L.; Bello-Perez, L.A. Acetylation of Banana (Musa Paradisiaca L.) and Maize (Zea Mays L.) Starches Using a Microwave Heating Procedure and Iodine As Catalyst: Partial Characterization. Starch/Starke 2010, 62, 155–164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.