2,803
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Fermentation-induced changes in the concentrations of organic acids, amino acids, sugars, and minerals and superoxide dismutase-like activity in tomato vinegar

, , , , , & show all
Pages 888-898 | Received 09 Feb 2016, Accepted 07 May 2016, Published online: 14 Oct 2016

References

  • Parrondo, J.; Herrero, M.; García, L.A.; Díaz, M. A Note—Production of Vinegar from Whey. Journal of the Institute of Brewing 2003, 109, 356–358.
  • Liljeberg, H.; Björck, I. Delayed Gastric Emptying Rate May Explain Improved Glycaemia in Healthy Subjects to a Starchy Meal with Added Vinegar. European Journal of Clinical Nutrition 1998, 52, 368–371.
  • Kondo, S.; Tayama, K.; Tsukamoto, Y.; Ikeda, K.; Yamori, Y. Antihypertensive Effects of Acetic Acid and Vinegar on Spontaneously Hypertensive Rats. Bioscience, Biotechnology, and Biochemistry 2001, 65, 2690–2694.
  • Fushimi, T.; Tayama, K.; Fukaya, M.; Kitakoshi, K.; Nakai, N.; Tsukamoto, Y.; Sato Y. Acetic Acid Feeding Enhances Glycogen Repletion in Liver and Skeletal Muscle of Rats. Journal of Nutrition 2001, 131, 1973–1977.
  • Carmichael, F.J.; Saldivia, V.; Varghese, G.A.; Israel, Y.; Orrego, H. Ethanol-Induced Increase in Portal Blood Flow: Role of Acetate And A1- and A2-Adenosine Receptors. American Journal of Physiology 1988, 255, 417–423.
  • Sakakibara, S.; Yamauchi, T.; Oshima, Y.; Tsukamoto, Y.; Kadowaki, T. Acetic Acid Activates Hepatic AMPK and Reduces Hyperglycemia in Diabetic KK-A(Y) Mice. Biochemical and Biophysical Research Communications 2006, 344, 597–604.
  • Fushimi, T.; Suruga, K.; Oshima, Y.; Fukiharu, M.; Tsukamoto, Y.; Goda, T. Dietary Acetic Acid Reduces Serum Cholesterol and Triacylglycerols in Rats Fed a Cholesterol-Rich Diet. British Journal of Nutrition 2006, 95, 916–924.
  • Nakamura, K.; Ogasawara, Y.; Endou, K.; Fujimori, S.; Koyama, M.; Akano, H. Phenolic Compounds Responsible for the Superoxide Dismutase-Like Activity in High-Brix Apple Vinegar. Journal of Agricultural and Food Chemistry 2010, 58, 10124–10132.
  • Budak, N.H.; Aykin, E.; Seydim, A.C.; Greene, A.K.; Guzel-Seydim, Z.B. Functional Properties of Vinegar. Journal of Food Science 2014, 79, 757–764.
  • Horiuchi, J.; Kanno, T.; Kobayashi M. New Vinegar Production from Onions. Journal of Bioscience and Bioengineering 1999, 88, 107–109.
  • Food and Agriculture Organization of the United Nations, & World Health Organization. 2014. http://www.fao.org/ (access on January 24th, 2016).
  • Alarcon-Flores, M.I.; Romero-Gonzalez, R.; Vidal, J.L.M.; Frenich A.G. Multiclass Determination of Phenolic Compounds in Different Varieties of Tomato and Lettuce by Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. International Journal of Food Properties 2016, 19, 494–507.
  • Siddiqui, M.W.; Chakraborty, I.; Homa, F.; Dhua, R.S. Bioactive Compounds and Antioxidant Capacity in Dark Green, Old Gold Crimson, Ripening Inhibitor, and Normal Tomatoes. International Journal of Food Properties 2016, 19, 688–699.
  • Boggio, S.B.; Palatnik, J.F.; Heldt, H.W.; Valle, E.M. Changes in Amino Acid Composition and Nitrogen Metabolizing Enzymes in Ripening Fruits of Lycopersicon Esculentum Mill. Plant Science 2000, 159, 125–133.
  • Hayakawa, K.; Kimura, M.; Kasaha, K.; Matsumoto, K.; Sansawa, H.; Yamori, Y. Effect of a γ-Aminobutyric Acid-Enriched Dairy Product on the Blood Pressure of Spontaneously Hypertensive and Normotensive Wistar–Kyoto Rats. British Journal of Nutrition 2004, 92, 411–417.
  • Yoshimura, M.; Toyoshi, T.; Sano, A.; Izumi, T.; Fujii, T.; Konishi, C.; Inai, S.; Matsukura, C.; Fukuda, N.; Ezura, H.; Obata, A. Antihypertensive Effect of a Gamma-Aminobutyric Acid Rich Tomato Cultivar “DG03-9” in Spontaneously Hypertensive Rats. Journal of Agricultural and Food Chemistry 2010, 58, 615–619.
  • Meneely, G.R.; Battarbee, H.D. High Sodium-Low Potassium Environment and Hypertension. American Journal of Cardiology 1976, 38, 768–785.
  • Sies, H. Strategies of Antioxidant Defense. European Journal of Biochemistry 1993, 215, 213–219.
  • Shahidi, F.; Wanasundara, P.K. Phenolic Antioxidants. Critical Reviews in Food Science and Nutrition 1992, 32, 67.
  • Lee, J.H.; Cho, H.D.; Jeong, J.H.; Lee, M.K.; Jeong, Y.K.; Shim, K.H.; Seo, K.I. New Vinegar Produced by Tomato Suppresses Adipocyte Differentiation and Fat Accumulation in 3T3-L1 Cells and Obese Rat Model. Food Chemistry 2013, 141, 3241–3249.
  • Seo, K.I.; Lee, J.; Choi, R.Y.; Lee, H.I.; Lee, J.H.; Jeong, Y.K.; Kim, M.J.; Lee, M.K. Anti-Obesity and Anti-Insulin Resistance Effects of Tomato Vinegar Beverage in Diet-Induced Obese Mice. Food and Function 2014, 5, 1579–1586.
  • Yasui, A.; Mukiseibun (Mineral). In Sin Shokuhin Bunseki-Ho Methods of Food Analysis; Japanese Society for Food Science and Food Technology and Editorial Committee for Shin Shokuhin Bunseki-Ho, Korin: Tokyo, Japan, 1996; 156–199.
  • Iijima, Y.; Nakamura, Y.; Ogata, Y.; Tanaka, K.; Sakurai, N.; Suda, K.; Suzuki, T.; Suzuki, H.; Okazaki, K.; Kitayama, M.; Kanaya, S.; Aoki, K.; Shibata, D. Metabolite Annotations Based on the Integration of Mass Spectral Information. The Plant Journal 2008, 54, 949–962.
  • Matsuura, R.; Moriyama, H.; Takeda, N.; Yamamoto, K.; Morita, Y.; Shimamura, T.; Ukeda, H. Determination of Antioxidant Activity and Characterization of Antioxidant Phenolics in the Plum Vinegar Extract of Cherry Blossom (Prunus Lannesiana). Journal of Agricultural and Food Chemistry 2008, 56, 544–549.
  • Callejón, R.M.; Troncoso, A.M.; Morales, M.L. Determination of Amino Acids in Grape-Derived Products: A Review. Talanta 2010, 81, 1143–1152.
  • Lokeshwari, M.; Swamy, C.N. Vermicomposting of Municipal and Agricultural Solid Waste with Sewage Sludge. Journal of Environmental Research and Development 2008, 3. 51–61.
  • Rossi, C.; Hauber, J.; Singer, T.P. Mitochondrial and Cytoplasmic Enzymes for the Reduction of Fumarate to Succinate in Yeast. Nature 1964, 10, 167–170.
  • Gilbert, J.B.; Price, V.E.; Greenstein, J.P. Effect of Anions on the Non-Enzymatic Desamidation of Glutamine. The Journal of Biological Chemistry 1949, 180, 209–218.
  • Semkina, G.A.; Matsievskii, D.D.; Mirzoyan, N.R. Effect of Pyrrolidone-Pyroglutamic Acid Composition on Blood Flow in Rat Middle Cerebral Artery. Bulletin of Experimental Biology and Medicine 2006, 141, 51–52.
  • Brunner, H.R.; Baer, L.; Sealey, J.E.; Ledingham, J.G.; Laragh, J.H. The Influence of Potassium Administration and of Potassium Deprivation on Plasma Renin in Normal and Hypertensive Subjects. Journal of Clinical Investigation 1970, 49, 2128–2138.
  • World Health Organization. A global brief on hypertension-silent killer, global public health crisis. WHO reference number: WHO/DCO/WHD/2013.2, 2013.
  • Abushita, A.A.; Daood, H.G.; Biacs, P.A. Change in Carotenoids and Antioxidant Vitamins in Tomato as a Function of Varietal and Technological Factors. Journal of Agricultural and Food Chemistry 2000, 48, 2075–2081.
  • Carrari, F.; Baxter, C.; Usadel, B.; Urbanczyk-Wochniak, E.; Zanor, M-I.; Nunes-Nesi, A.; Nikiforova, V.; Centero, D.; Ratzka, A.; Pauly, M.; Sweetlove, L-J.; Fernie, A.R. Integrated Analysis of Metabolite and Transcript Levels Reveals the Metabolic Shifts That Underlie Tomato Fruit Development and Highlight Regulatory Aspects of Metabolic Network Behavior. Plant Physiology 2006, 142, 1380–1396.
  • Winter, M.; Herrmann, K. Esters and Glucosides of Hydroxycinnamic Acids in Vegetables. Journal of Agricultural and Food Chemistry 1986, 34, 616–620.
  • Buta, J.G.; Spaulding, D.W. Endogenous Levels of Phenolics in Tomato Fruit During Growth and Maturation. Journal of Plant Growth Regulation 1997, 16, 43–46.
  • Schmidtlein, H.; Herrmann, K. Uber die phenolsauren des gemuses. II. Hydroxyzimtsauren und hydroxybenzoesauren der frucht- und samengemusearten. Z Lebensm Unters Forsch [About the phenolic acid of Gemuses. II. Hydroxycinnamic acid and monohydroxybenzoic acid of fruit and Samengemusearten]. 1975, 159, 213–218.
  • Shoji, K.; Ubukata, M.; Momonoi, K.; Tsuji, T.; Morimatsu, T. Anther-Specific Production of Antimicrobial Tuliposide B in Tulips. Journal of the Japanese Society for Horticultural Science 2005, 74, 469–475.
  • Seo, O.N.; Kim, G.S.; Kim, Y. H.; Park, S.; Jeong, S.W.; Lee, S.J.; Jin, J.S.; Shin, S.C. Determination of Polyphenol Components of Korean Scutellaria Baicalensis Georgi Using Liquid Chromatography Tandem Mass Spectrometry: Contribution to Overall Antioxidant Activity. Journal of Functional Foods 2013, 5, 1741–1750.
  • Le Gall, G.; Colquhoun, I.J.; Davis, A.L.; Collins, G.J.; Verhoeyen, M.E. Metabolite Profiling of Tomato (Lycopersicon Esculentum) Using 1HNMR Spectroscopy as a Tool to Detect Potential Unintended Effects Following a Genetic Modification. Journal of Agricultural and Food Chemistry 2003, 51, 2447–2456.
  • Bovy, A.; de Vos, C.H.R.; Kemper, M.; Schijlen, E.; Almenar Pertejo, M.; Muir, S.; Collins, G.; Robinson, S.; Verhoeyen, M.; Hughes, S.; Santos-Buelga, C.; van Tunena, A. High-Flavonol Tomatoes Resulting from the Heterologous Expression of the Maize Transcription Factor Genes LC and C1. Plant Cell 2002, 14, 2509–2526.
  • Bino, R.J.; de Vos, C.H.R.; Lieberman, M.; Hall, R.D.; Bovy, A.; Jonker, H.H.; Tikunov, Y.; Lommen, A.; Moco, S.; Levin, I. The Light-Hyperresponsive High Pigment-2dg Mutation of Tomato: Alterations in the Fruit Metabolome. New Phytologist 2005, 166, 427–438.
  • Minoggio, M.; Bramati, L.; Simonetti, P.; Gardana, C.; Iemoli, L.; Santangelo, E.; Mauri, P.L.; Spigno, P.; Soressi, G.P.; Pietta, P.G. Polyphenol Pattern and Antioxidant Activity of Different Tomato Lines and Cultivars. Annals of Nutrition and Metabolism 2003, 47, 64–69.
  • Hras, A.R.; Hadolin, M.; Knez, Z.; Bauman, D. Comparison of Antioxidative and Synergistic Effects of Rosemary Extract with α-Tocopherol, Ascorbyl Palmitate and Citric Acid in Sunflower Oil. Food Chemistry 2000, 71, 229–233.
  • Hanachi, P.; Golkho, S.H. Using HPLC to Determination the Composition and Antioxidant Activity of Berberis Vulgaris. European Journal of Scientific Research 2009, 29, 47–54.
  • Gülçin, I. Comparison of in Vitro Antioxidant and Antiradical Activities of l-Tyrosine and l-DOPA. Amino Acids 2007, 32, 431–438.
  • Yu, L.; Haley, S.; Perret, J.; Harris, M.; Wilson, J.; Qian, M. Free Radical Scavenging Properties of Wheat Extracts. Journal of Agricultural and Food Chemistry 2002, 50, 1619–1624.
  • Chen, H.; Zhou, Y.; Shao, Y.; Chen, F. Free Phenolic Acids in Shanxi Aged Vinegar: Changes During Aging and Synergistic Antioxidant Activities. International Journal of Food Properties 2016, 19, 1183–1193.
  • Afanas’ev, I.B.; Dorozhko, A.I.; Brodskii, A.V.; Kostyuk, V.A.; Potapovitch, A.I. Chelating and Free Radical Scavenging Mechanisms of Inhibitory Action of Rutin and Quercetin in Lipid Peroxidation. Biochemical Pharmacology 1989, 38, 1763–1769.
  • Gahler, S.; Otto, K.; Bohm, V. Alterations of Vitamin C, Total Phenolics, and Antioxidant Capacity as Affected by Processing Tomatoes to Different Products. Journal of Agricultural and Food Chemistry 2003, 51, 7962–7968.
  • Martins, J.B.; Chaudhary, A.K.; Jiang, S.; Kwofie, M.; Mackie, P.; Miller, F.J. Role of NADPH Oxidase and Xanthine Oxidase in Mediating Inducible Vt/Vf and Triggered Activity in a Canine Model of Myocardial Ischemia. International Journal of Molecular Sciences 2014, 15, 20079–20100.
  • Rodríguez, A.; Gómez-Ambrosi, J.; Catalán, V.; Fortuño, A.; Frühbeck, G. Leptin Inhibits the Proliferation of Vascular Smooth Muscle Cells Induced by Angiotensin II Through Nitric Oxide-Dependent Mechanisms.Mediators of Inflammation 2010, 2010, 105489.
  • Cameron, E.N.; Cotter, A.M. Effects of Antioxidants on Nerve and Vascular Dysfunction in Experimental Diabetes. Diabetes Research and Clinical Practice 1999, 45, 137–146.
  • Shi, J.; Yu, J.; Pohorly, J.E.; Kakuda, Y. Polyphenolics in Grape Seeds—Biochemistry and Functionality. Journal of Medicinal Food 2003, 6, 291–299.
  • Karasu, C. Time Course of Changes in Endothelium-Dependent and –Independent Relaxation of Chronically Diabetic Aorta: Role of Reactive Oxygen Species. European Journal of Pharmacology 2000, 392, 163–173.
  • Khalil, R.A. Hypertension and Vascular Dysfunction. In Interdisciplinary Concepts in Cardiovascular Health. Springer International Publishing: Cham, Switzerland, 2013; 1–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.