859
Views
6
CrossRef citations to date
0
Altmetric
Articles

Isophtalic acid terminated graphene oxide modified glassy carbon nanosensor electrode: Cd2+ and Bi3+ analysis in tap water and milk samples

, , , , &
Pages 1558-1568 | Received 21 Apr 2016, Accepted 13 Jul 2016, Published online: 14 Nov 2016

References

  • Jarup, L. Health Effects of Cadmium Exposure—A Review of the Literature and a Risk Estimate. Scandinavian Journal of Work, Environment & Health 1998, 24, 11–51.
  • Waalkes, M.P. Cadmium Carcinogenesis. Mutation Research 2003, 533, 107–120.
  • Goering, P.L.; Waalkes, M.P.; Klaassen, C.D. Toxicology of Cadmium. In Handbook of Experimental Pharmacology: Toxicology of Metals, Biochemical Effects; Goyer, R.A.; Cherian, M.G.; Eds; Springer-Verlag: New York, NY, 1994; 189–214.
  • Bertin, G.; Averbeck, D. Cadmium: Cellular Effects, Modifications of Biomolecules, Modulation of DNA Repair and Genotoxic Consequences (A Review). Biochimie 2006, 88, 1549–1559.
  • Satarug, S.; Baker, J.R.; Urbenjapol, S.; Haswell-Elkins, M.; Reilly, P.E.B.; Williams, D.J.; Moore, M.R. A Global Presepective on Cadmium Pollution and Toxicity in Nonoccupationally Exposed Population. Toxicology Letters 2003, 137, 65–83.
  • Klaassen, C.D.; Liu, J.; Choudhuri, S. Metallothionein: An Intracellular Protein to Protect Against Cadmium Toxicity. Annual Review of Pharmacology 1999, 39, 267–294.
  • Waalkes, M.P. Cadmium Carcinogenesis in Review. Journal of Inorganic Biochemistry 2000, 79, 241–244.
  • Tücks, A.; Beck, H.P. The Photochromic Effect of Bismuth Vanadate Pigments: Investigations on the Photochromic Mechanism. Dyes and Pigments 2007, 72, 163–177.
  • Kong, D.; Chen, Y.; Wan, P.; Liu, S.; Khan, Z.U.H.; Men, B. Pre-Plating of Bismuth Film Electrode with Coexisted Sn2+ in Electrolyte. Electrochimica Acta 2014, 125, 573–579.
  • Dipalma, J.R. Bismuth Toxicity. American Family Physician 1998, 38, 244–246.
  • Ouyang, R.; Zhu, Z.; Tatum, C.E.; Chambers, J.Q.; Xue, Z.L. Simultaneous Stripping Detection of Pb(II), Cd(II) and Zn(II) Using a Bimetallic Hg-Bi/Single-Walled Carbon Nanotubes Composite Electrode. Journal of Electroanalytical Chemistry 2011, 656, 78–84.
  • Luo, J.H.; Jiao, X.X.; Li, N.B.; Luo, H.Q. Sensitive Determination of Cd(II) by Square Wave Anodic Stripping Voltammetry With in Situ Bismuth-Modified Multiwalled Carbon Nanotubes Doped Carbon Paste Electrodes. Journal of Electroanalytical Chemistry 2013, 689, 130–134.
  • Wei, Y.; Yang, R.; Yu, X.Y.; Wang, L.; Liu, J.H.; Huang, X.J. Stripping Voltammetry Study of Ultra-Trace Toxic Metal Ions on Highly Selectively Adsorptive Porous Magnesium Oxide Nanoflowers. Analyst 2012, 137, 2183–2191.
  • Mandil, A.; Pauliukaite, R.; Amine, A.; Brett, C.M.A. Electrochemical Characterization of and Stripping Voltammetry at Screen Printed Electrodes Modified with Different Brands of Multiwall Carbon Nanotubes and Bismuth Films. Analytical Letters 2012, 45, 395–407.
  • Afkhami, A.; Ghaedi, H.; Madrakian, T.; Rezaeivala, M. Highly Sensitive Simultaneous Electrochemical Determination of Trace Amounts of Pb(II) and Cd(II) Using a Carbon Paste Electrode Modified with Multi-Walled Carbon Nanotubes and a Newly Synthesized Schiff Base. Electrochimica Acta 2013, 89, 377–386.
  • Xu, H.; Zeng, L.; Xing, S.; Xian, Y.; Shi, G.; Jin, L. Ultrasensitive Voltammetric Detection of Trace Lead(II) and Cadmium(II) Using MWCNTs-Nafion/Bismuth Composite Electrodes. Electroanalysis 2008, 20, 2655–2662.
  • Ashrafi, A.M.; Vytřas, K. Determination of Trace Bismuth(III) by Stripping Voltammetry at Antimony-Coated Carbon Paste Electrode. International Journal of Electrochemical Science 2012, 7, 68–76.
  • Khaloo, S.S.; Ensafi, A.A.; Khayamian, T. Determination of Bismuth and Copper Using Adsorptive Stripping Voltammetry Couple with Continuous Wavelet Transform. Talanta 2007, 71, 324–332.
  • Lexa, J.; Stulík, K. Determination of Bismuth by Electrochemical Stripping Analysis; Elimination of Interferences by Using a Mercury Film Electrode Modified with Tri-N-Octylphosphine Oxide and Application to Copper Alloys. Talanta 1986, 33, 11–16.
  • Toh, S.Y.; Loh, K.S.; Kamarudin, S.K.; Daud, W. R. W. Graphene Production Via Electrochemical Reduction of Graphene Oxide: Synthesis and Characterization. Chemical Engineering Journal 2014, 251, 422–434.
  • Liu, Q.; Ishibashi, A.; Fujigaya, T.; Mimura, K.; Gotou, T.; Uera, K.; Nakashima, N. Formation of Self-Organized Graphene Honeycomb Films on Substrates. Carbon 2011, 49, 3424–3429.
  • Sanghavi, B.J.; Kalambate, P.K.; Karna, S.P.; Srivastava, A.K. 2014. Voltammetric Determination of Sumatriptan Based on a Graphene/Gold Nanoparticles/Nafion Composite Modified Glassy Carbon Electrode. Talanta 2014, 120, 1–9.
  • Jung, J.H.; Park, H.J.; Kim, J.; Hur, S.H. Highly durable Pt/Graphene Oxide and Pt/C Hybrid Catalyst for Polymer Electrolyte Membrane Fuel Cell. Journal of Power Sources 2014, 248, 1156–1162.
  • Channu, V.S.R.; Ravichandran, D.; Rambabu, B.; Holze, R. Carbon and Functionalized Graphene Oxide Coated Vanadium Oxide Electrodes for Lithium Ion Batteries. Applied Surface Science 2014, 305, 596–602.
  • Battumur, T., Ambade, S. B., Ambade, R. B., Pokharel, P., Lee, D. S., Han, S. -H. Lee, W. and Lee, S.-H. Addition of Multiwalled Carbon Nanotube and Graphene Nanosheet In Cobalt Oxide Film for Enhancement of Capacitance in Electrochemical Capacitors. Current Applied Physics 2013, 13, 196–204.
  • Lin, Q.; Li, Y.; Yang, M. Tin Oxide/Graphene Composite Fabricated Via a Hydrothermal Method for Gas Sensors Working at Room Temperature. Sensors and Actuators B: Chemical 2012, 173, 139–147.
  • Gan, T.; Sun, J.; Huang, K.; Song, L.; Li, Y. A Graphene Oxide–Mesoporous MnO2 Nanocomposite Modified Glassy Carbon Electrode as a Novel and Efficient Voltammetric Sensor for Simultaneous Determination of Hydroquinone and Catechol. Sensors and Actuators B: Chemical 2013, 177, 412–418.
  • Demir Mülazımoğlu, A.; Yılmaz, E.; Mülazımoğlu, İ.E. Dithiooxamide Modified Glassy Carbon Electrode for the Studies of Non-Aqueous Media: Electrochemical Behaviors of Quercetin onto the Electrode Surface. Sensors 2012, 12, 3916–3928.
  • Mülazımoğlu, İ.E.; Solak, A.O. A Novel Apigenin Modified Glassy Carbon Sensor Electrode for the Determination of Copper Ions in Soil Samples. Analytical Methods 2011, 3, 2534–2539.
  • Mülazımoğlu, İ.E. Electrochemical Determination of Copper(II) Ions at Naringenin-Modified Glassy Carbon Electrode: Application in Lake Water Sample. Desalination and Water Treatment 2012, 44, 161–167.
  • Zhang, D.; Tong, J.; Xia, B. Humidity-Sensing Properties of Chemically Reduced Graphene Oxide/Polymer Nanocomposite Film Sensor Based on Layer-By-Layer Nano Self-Assembly. Sensors and Actuators B: Chemical 2014, 197, 66–72.
  • Mishra, S.K.; Tripathi, S.N.; Choudhary, V.; Gupta, B.D. SPR Based Fibre Optic Ammonia Gas Sensor Utilizing Nanocomposite Film of PMMA/Reduced Graphene Oxide Prepared by in Situ Polymerization. Sensors and Actuators B: Chemical 2014, 199, 190–200.
  • Li, X.; Chen, X.; Yao, Y.; Li, N.; Chen, X. High-Stability Quartz Crystal Microbalance Ammonia Sensor Utilizing Graphene Oxide Isolation Layer. Sensors and Actuators B: Chemical 2014, 196, 183–188.
  • Alizadeh, T.; Mirzagholipur, S. A Nafion-Free Non-Enzymatic Amperometric Glucose Sensor Based on Copper Oxide Nanoparticles–Graphene Nanocomposite. Sensors and Actuators B: Chemical 2014, 198, 438–447.
  • Liu, H.; Lv, T.; Wu, X.; Zhu, C.; Zhu, Z. 2014. Preparation and Enhanced Photocatalytic Activity of CdS@RGO Core–Shell Structural Microspheres. Applied Surface Science 2014, 305, 242–246.
  • He, B.; Shen, Y.; Ren, Z.; Xiao, C.; Jiang, W.; Liu, L.; Yan, S.; Wang, Z.; Yu, Z. Defect-Controlled Synthesis of Graphene Based Nano-Size Electronic Devices Using in Situ Thermal Treatment. Organic Electronics 2014, 15, 685–691.
  • Zhou, W.; Sun, C.; Zhou, Y.; Yang, X.; Yang, W. A Facial Electrochemical Approach to Determinate Bisphenol a Based on Graphene-Hypercrosslinked Resin Mn2O2 Composite. Food Chemistry 2014, 158, 81–87.
  • Chaudhuri, B.; Bhadra, D.; Mondal, B.; Pramanik, K. Biocompatibility of Electrospun Graphene Oxide–Poly(ε-Caprolactone) Fibrous Scaffolds with Human Cord Blood Mesenchymal Stem Cells Derived Skeletal Myoblast. Materials Letters 2014, 126, 109–112.
  • Üstündağ, Z.; Solak, A.O. EDTA Modified Glassy Carbon Electrode: Preparation and Characterization. Electrochimica Acta 2009, 54, 6426–6432.
  • Mülazımoğlu, İ.E.; Demir Mülazımoğlu, A. Investigation of Sensitivity Against Different Flavonoid Derivatives of Aminophenyl Modified Glassy Carbon Sensor Electrode and Antioxidant Activities. Food Analytical Methods 2012, 5, 1419–1426.
  • Mülazımoğlu, İ.E.; Demir Mülazımoğlu, A.; Yılmaz, E. Determination of Phenol in Tap Water Samples as Electrochemical using 3,3’-Diaminobenzidine Modified Glassy Carbon Sensor Electrode. Desalination 2011, 268, 227–232.
  • Li, Y.; Feng, S.; Li, S.; Zhang, Y.; Zhong, Y. A High Effect Polymer-Free Covalent Layer by Layer Self-Assemble Carboxylated MWCNTs Films Modified GCE for the Detection of Paracetamol. Sensors and Actuators B: Chemical 2014, 190, 999–1005.
  • Maleh, H. K., Moazampour, M., Gupta, V.K. and Sanati, A. L. Electrocatalytic Determination of Captopril in Real Samples Using NiO Nanoparticle Modified (9,10-Dihydro-9,10-Ethanoanthracene-11,12-Dicarboximido)-4-Ethylbenzene-1,2-Diol Carbon Paste Electrode. Sensors and Actuators B: Chemical 2014, 199, 47–53.
  • Demir Mülazımoğlu, A.; Mülazımoğlu, İ.E. Electrochemical Behaviors of 2-Amino-3-Hydroxypyridine onto the Glassy Carbon Sensor Electrode: Simultaneous and Independent Determinations of Quercetin, Galangin, 3-Hydroxyflavone and Chrysin. Food Analytical Methods 2013, 6, 845–853.
  • Demir Mülazımoğlu, A.; Mülazımoğlu, İ.E. 2013. Electrochemical Properties of MDA/GC Electrode and Investigation of Usability as Sensor Electrode for Determination of Que, Kae, Lut and Gal using CV, DPV and SWV. Food Analytical Methods 2013, 6, 141–147.
  • Demir Mülazımoğlu, A.; Mülazımoğlu, I.E.; Yılmaz, E. Determination of Copper Ions Based on Newly Developed Poly-Chrysin Modified Glassy Carbon Sensor Electrode. Reviews in Analytical Chemistry 2012, 31, 131–137.
  • Sanghavi, B.J.; Mobin, S.M.; Mathur, P.; Lahiri, G.K.; Srivastava, A.K. Biomimetic Sensor for Certain Catecholamines Employing Copper(II) Complex and Silver Nanoparticle Modified Glassy Carbon Paste Electrode. Biosensors and Bioelectronics 2013, 39, 124–132.
  • Sanghavi, B.J.; Srivastava, A.K. Adsorptive Stripping Differential Pulse Voltammetric Determination of Venlafaxine and Desvenlafaxine Employing Nafion–Carbon Nanotube Composite Glassy Carbon Electrode. Electrochimica Acta 2011, 56, 4188–4196.
  • Elyasi, M.; Khalilzadeh, M.A.; Maleh, H.K. High Sensitive Voltammetric Sensor Based on Pt/CNTs Nanocomposite Modified Ionic Liquid Carbon Paste Electrode for Determination of Sudan i in Food Samples. Food Chemistry 2013, 141, 4311–4317.
  • Ensafi, A.A. Modified Multiwall Carbon Nanotubes Paste Electrode as a Sensor for Simultaneous Determination of 6-Thioguanine and Folic Acid Using Ferrocenedicarboxylic Acid as a Mediator. Journal of Electroanalytical Chemistry 2010, 640, 75–83.
  • Raoof, J.B.; Maleh, H.K.; Hosseinzadeh, R. Electrocatalytic Oxidation and Voltammetric Determination of Hydrazine at Bulk-Modified Carbon Paste Electrode with 1-[-4 (Ferrocenyl Ethynyl Phenyl]-1-Ethanone. Analytical and Bioanalytical Electrochemistry 2014, 6, 91–105.
  • Maleh, H.K.; Moazampour, M.; Ahmar, H.; Beitollahi, H.; Ensafi, A.A. A Sensitive Nanocomposite-Based Electrochemical Sensor for Voltammetric Simultaneous Determination of Isoproterenol, Acetaminophen and Tryptophan. Measurement 2014, 51, 91–99.
  • Lin, X.; Ni, Y.; Kokot, S. Electrochemical Mechanism of Eugenol at a Cu Doped Gold Nanoparticles Modified Glassy Carbon Electrode and Its Analytical Application in Food Samples. Electrochimica Acta 2014, 133, 484–491.
  • Zhang, K.; Zhang, Y.; Wang, S. Enhancing Thermoelectric Properties of Organic Composites Through Hierarchical Nanostructures. Scientific Reports 2013, 3, 3448–3454.
  • Kim, H.J.; Bae, I.S.; Cho, S.J.; Boo, J.H.; Lee, B.C.; Heo, J.; Chung, I.; Hong, B. Synthesis and Characteristics of NH2-Functionalized Polymer Films to Align and Immobilize DNA Molecules. Nanoscale Research Letters 2012, 7, 30–36.
  • Li, Z.; Chen, L.; He, F.; Bu, L.; Qin, X.; Xie, Q.; Yao, S.; Tu, X.; Luo, X.; Luo, S. Square Wave Anodic Stripping Voltammetric Determination Of Cd2+ and Pb2+ at Bismuth-Film Electrode Modified with Electroreduced Graphene Oxide-Supported Thiolated Thionine. Talanta 2014, 122, 285–292.
  • Hesse, P.R. A Textbook of Soil Chemical Analysis. John Murray: London, 1971.
  • Cerutti, S.; Escudero, L.A.; Gasquez, J.A.; Olsina, R.A.; Martinez, L.D. On-Line Preconcentration and Vapor Generation of Scandium Prior to ICP-OES Detection. Journal of Analytical Atomic Spectrometry 2011, 26, 2428–2433.
  • Gila, R.A.; Cabello, S.P.; Takara, A.; Smichowski, P.; Olsina, R.A.; Martínez, L.D. A Novel on-Line Preconcentration Method for Trace Molybdenum Determination by USN–ICP OES with Biosorption on Immobilized Yeasts. Microchemical Journal 2007, 86, 156–160.
  • Ping, J.; Wang, Y.; Wu, J.; Ying, Y. Development of an Electrochemically Reduced Graphene Oxide Modified Disposable Bismuth Film Electrode and Its Application for Stripping Analysis of Heavy Metals in Milk. Food Chemistry 2014, 151, 65–71.
  • Abbasi, S.; Bahiraei, A.; Abbasai, F. A Highly Sensitive Method for Simultaneous Determination of Ultratrace Levels of Copper and Cadmium in Food and Water Samples with Luminol as a Chelating Agent by Adsorptive Stripping Voltammetry. Food Chemistry 2011, 129, 1274–1280.
  • Montesinos, P.C.; Cervera, M.L.; Pastor, A.; de la Guardia, M. Determination of Ultratrace Bismuth in Milk Samples by Atomic Fluorescence Spectrometry. Journal of AOAC International 2003, 86, 815–822.
  • Feng, P.J.; Jian, W.; Bin, Y.Y. Determination of Trace Heavy Metals in Milk Using an Ionic Liquid and Bismuth Oxide Nanoparticles Modified Carbon Paste Electrode. Chinese Science Bulletin 2012, 57, 1781–1787.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.