4,842
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Morphology and gelation properties of konjac glucomannan: Effect of microwave processing

, , , &
Pages 3023-3032 | Received 23 Jul 2016, Accepted 07 Dec 2016, Published online: 31 Mar 2017

References

  • Nishinari, K.; Williams, P.A.; Phillips, G.O. Review of the Physico-chemical Characteristics and Properties of Konjac Mannan. Food Hydrocolloids 1992, 6 (2), 199–222.
  • Chua, M.; Baldwin, T.C.; Hocking, T.J.; Chan, K. Traditional Uses and Potential Health Benefits of Amorphophallus konjac K. Koch ex N.E.Br. Journal of Ethnopharmacology 2010, 128 (2), 268–278.
  • Iglesias-Otero, M.A.; Borderías, J.; Tovar, C.A. Use of Konjac Glucomannan as Additive to Reinforce the Gels from Low-quality Squid Surimi. Journal of Food Engineering 2010, 101 (3), 281–288.
  • Liu, J.; Wang, X.; Ding, Y. Optimization of Adding Konjac Glucomannan to Improve Gel Properties of Low-quality Surimi. Carbohydrate Polymers 2013, 92 (1), 484–489.
  • Liu, J.; Zhu, K.; Ye, T.; Wan, S.; Wang, Y.; Wang, D.; Li, B.; Wang, C. Influence of Konjac Glucomannan on Gelling Properties and Water State in Egg White Protein Gel. Food Research International 2013, 51 (2), 437–443.
  • Jiménez-Colmenero, F.; Triki, M.; Herrero, A.M.; Rodríguez-Salas, L.; Ruiz-Capillas, C.. Healthy Oil Combination Stabilized in a Konjac Matrix as Pork Fat Replacement in Low-fat, PUFA-enriched, Dry Fermented Sausages. LWT - Food Science and Technology 2013, 51 (1), 158–163.
  • Ruiz-Capillas, C.; Triki, M.; Herrero, A.M.; Rodriguez-Salas, L.; Jimenez-Colmenero, F. Konjac Gel as Pork Backfat Replacer in Dry Fermented Sausages: Processing and Quality Characteristics. Meat Science 2012, 92 (2), 144–150.
  • Li, J.; Wang, Y.; Jin, W.; Zhou, B.; Li, B. Application of Micronized Konjac Gel for Fat Analogue in Mayonnaise. Food Hydrocolloids 2014, 35, 375–382.
  • Marcano, J.; Hernando, I.; & Fiszman, S. In Vitro Measurements of Intragastric Rheological Properties and their Relationships with the Potential Satiating Capacity of Cheese Pies with Konjac Glucomannan. Food Hydrocolloids 2015, 51, 16–22.
  • Kato, K.; Matsuda, K. Studies on the Chemical Structure of Konjac Mannan Part I. Isolation and Characterization of Oligosaccharides from the Partial Acid Hydrolyzate of the Mannan. Agricultural and Biological Chemistry 1969, 33 (10), 1446–1453.
  • Katsuraya, K.; Okuyama, K.; Hatanaka, K.; Oshima, R.; Sato, T.; Matsuzaki, K. Constitution of Konjac Glucomannan: Chemical Analysis and 13C NMR Spectroscopy. Carbohydrate Polymers 2003, 53 (2), 183–189.
  • Lafarge, C.; Journaux, L.; Bonnotte, A.; Lherminier, J.; Lee, J.A.; Baile, P.L.; Cayot, N. Trapping of Carvacrol by Konjac Glucomannan-potato Starch Gels: Stability from Macroscopic to Microscopic Scale, Using Image Processing. Food Hydrocolloids 2017, 66, 216–226.
  • Bewley, J.D.; Reid, J.S.G. Biochemistry of Storage Carbohydrates in Green Plants; Academic Press: New York, 1985, pp. 289–304.
  • Khanna, S.; Tester, R.F. Influence of Purified Konjac Glucomannan on the Gelatinisation and Retrogradation Properties of Maize and Potato Starches. Food Hydrocolloids 2006, 20 (5), 567–576.
  • Chen, J.; Li, J.; & Li, B. Identification of Molecular Driving Forces involved in the Gelation of Konjac Glucomannan: Effect of Degree of Deacetylation on Hydrophobic Association. Carbohydrate Polymers 2011, 86 (2), 865–871.
  • Cheng, L.H.; Abd Karim, A.; Norziah, M.H.; Seow, C.C. Modification of the Microstructural and Physical Properties of Konjac Glucomannan-based Films by Alkali and Sodium Carboxymethylcellulose. Food Research International 2002, 35 (9), 829–836.
  • Maekaji, K. The Mechanism of Gelation of Konjacmannan. Agricultural and Biological Chemistry 1974, 38, 315–321.
  • Tye, R.J. Konjac Flour: Properties and Applications. Food Technology 1991, 45 (3), 82–92.
  • Williams, M.A.; Foster, T.J.; Martin, D.R.; Norton, I.T.; Yoshimura, M.; Nishinari, K. A Molecular Description of the Gelation Mechanism of Konjac Mannan. Biomacromolecules 2000, 1 (3), 440–450.
  • Herranz, B.; Borderias, A.J.; Solo-de-Zaldívar, B.; Solas, M.T.; Tovar, C.A. Thermostability Analyses of Glucomannan Gels. Concentration Influence. Food Hydrocolloids 2012a, 29 (1), 85–92.
  • Herranz, B.; Tovar, C.A.; Solo-de-Zaldívar, B.; Borderias, A.J. Effect of Alkalis on Konjac Glucomannan Gels for use as Potential Gelling Agents in Restructured Seafood Products. Food Hydrocolloids 2012b, 27 (1), 145–153.
  • Herranz, B.; Borderias, A.J.; Solas, M.T.; Tovar, C.A. Influence of Measurement Temperature on the Rheological and Microstructural Properties of Glucomannan Gels with different Thermal Histories. Food Research International 2012c, 48 (2), 885–892.
  • Solo-de-Zaldívar, B.; Tovar, C.A.; Borderías, A.J.; Herranz, B. Effect of Deacetylation on the Glucomannan Gelation Process for Making Restructured Seafood Products. Food Hydrocolloids 2014, 35, 59–68.
  • Ahmad, M.; Gani, A.; Shah, A.; Gani, A.; Masoodi, F.A. Germination and Microwave Processing of Barley (Hordeum vulgare L) changes the Structural and Physicochemical Properties of β-D-glucan & Enhances its Antioxidant Potentialmudasir. Carbohydrate Polymers 2016, 153, 696–702.
  • Zhang, W.; Luan, D.; Tang, J.; Sablani, S.S.; Rasco, B.; Lin, H.; Liu, F. Dielectric Properties and other Physical Properties of low-acyl gellan gel as Relevant to Microwave Assisted Pasteurization Process. Journal of Food Engineering 2015, 149, 195–203.
  • Kong, F.; Tang, J.; Rasco, B.; Crapo, C. Kinetics of Salmon Quality changes during Thermal Processing. Journal of Food Engineering 2007, 83 (4), 510–520.
  • Tang, J.; Liu, F.; Pathak, S.; Eves, G. Apparatus and Method for Heating Objectives with Microwaves. U.S. Patent 7 2006, 119, 313.
  • Sahin, S.; Sumnu, G. Effects of Microwave Cooking on Fish Quality. International Journal of Food Properties 2001, 4 (3), 501–512.
  • Sosa-Morales, M.E.; Valerio-Junco, L.; López-Malo, A.; García, H.S. Dielectric properties of foods: Reported Data in the 21st Century and their Potential Applications. LWT - Food Science and Technology 2010, 43 (8), 1169–1179.
  • Wang, Y.; Tang, J.; Rasco, B.; Wang, S.; Alshami, A.A.; Kong, F. Using Whey Protein Gel as a Model Food to Study Dielectric Heating Properties of Salmon (Oncorhynchus gorbuscha) fillets. LWT - Food Science and Technology 2009, 42 (6), 1174–1178.
  • Zhang, T.; Xue, Y.; Li, Z.; Wang, Y.; Xue, C. Effects of Deacetylation of Konjac Glucomannan on Alaska Pollock surimi gels subjected to high-temperature (120°C) treatment. Food Hydrocolloids 2015, 43, 125–131.
  • Liu, R.; Zhao, S.M.; Xiong, S.B.; Xie, B.J.; Qin, L.H. Role of Secondary Structures in the Gelation of Porcine Myosin at different pH Values. Meat Science 2008, 80 (3), 632–639.
  • Bi, W.; Zhao, W.; Li, D.; Li, X.; Yao, C.; Zhu, Y.; Zhang, Y. Effect of Resistant Starch and Inulin on the Properties of Imitation Mozzarella Cheese. International Journal of Food Properties 2016. 19 (1), 159–171.
  • Bhattacharya, M.; Basak, T. A Review on the Susceptor Assisted Microwave Processing of Materials. Energy 2016, 97, 306–338.
  • Divekar, M.T.; Karunakaran, C.; Lahlali, R.; Kumar, S.; Chelladurai, V.; Liu, X.; Borondics, F.; Shanmugasundaram, S.; Jayas, D.S. Effect of Microwave Treatment on the Cooking and Macronutrient Qualities of Pulses. International Journal of Food Properties 2016, 20 (2), 409–422.
  • Arocas, A.; Sanz, T.; Hernando, M.I.; Fiszman, S.M. Comparing Microwave- and Water Bath-thawed Starch-based Sauces: Infrared Thermography, Rheology and Microstructure. Food Hydrocolloids 2011, 25, 1554–1562.
  • Bollaín, C.; Angioloni, A.; Collar, C. Bread Staling Assessment of Enzyme-supplemented Pan Breads by Dynamic and Static Deformation Measurements. European Food Research & Technology 2005, 220 (1), 83–89.
  • Romero, A.; Cordobés, F.; Puppo, M.C.; Villanueva, Á.; Pedroche, J.; Guerrero, A. Linear Viscoelasticity and Microstructure of Heat-induced Crayfish Protein Isolate Gels. Food Hydrocolloids 2009, 23 (3), 964–972.
  • Long, Z.; Zhao, M.; Sun-Waterhouse, D.; Lin, Q.; Zhao, Q. Effects of Sterilization Conditions and Milk Protein Composition on the Rheological and Whipping Properties of Whipping cream. Food Hydrocolloids 2016, 52, 11–18.
  • Gong, J.; Peng, C.; Xing, Z.; Pang, J. Studies on the Interaction Force of Konjac Glucomannan and Soybean Isolate Protein Combination during Gel Formation. Journal of Chinese Institute of Food Science and Technology 2006, 6(5), 64–68.
  • Chua, M.; Chan, K.; Hocking, T.J.; Williams, P.A., Perry, C.J.; Baldwin, T.C. Methodologies for the Extraction and Analysis of Konjac Glucomannan from Corms of Amorphophallus konjac K. Koch. Carbohydrate Polymers 2012, 87 (3), 2202–2210.
  • Yu, H.; Huang, Y.; Ying, H.; Xiao, C. Preparation and Characterization of a Quaternary Ammonium Derivative of Konjac Glucomannan. Carbohydrate Polymers 2007, 69 (1), 29–40.
  • Zhang, H.; Yoshimura, M.; Nishinari, K.; Williams, M.A.K.; Foster, T.J.; Norton, I.T. Gelation Behavior of Konjac Glucomannan with different Molecular Weights. Biopolymers 2001, 59, 38–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.