1,655
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

The Binding mechanism of anthocyanins from sour cherries (Prunus cerasus L) skins to bovine β-lactoglobulin: A fluorescence and in silico-based approach

, , , &
Pages S3096-S3111 | Received 12 Jan 2017, Accepted 14 Jun 2017, Published online: 24 Jan 2018

References

  • Le Maux S.; Bouhallab S.; Giblin L.; Brodkorb A.; Croguennec T. Bovine β-lactoglobulin/Fatty Acid Complexes: Binding, Structural, and Biological Properties. Dairy Science Technology 2014, 94, 409–426.
  • Smithers G.W. Whey and Whey Proteins-from ‘Gutter-to-Gold’. International Dairy Journal 2008, 18, 695–704.
  • Li M.; Maa Y.; Ngadi M.O. Binding of Curcumin to β-lactoglobulin and Its Effect on Antioxidant Characteristics of Curcumin. Food Chemistry 2013, 141, 1504–1511.
  • Iametti S.; Scaglioni L.; Mazzini S.; Vecchio G.; Bonomi F. Structural Features and Reversible Association of Different Quaternary Structures of β-lactoglobulin. Journal of Agricultural and Food Chemistry 1998, 46, 2159–2166.
  • Brownlow S.; Cabral J.H.; Cooper R.; Flower D.R.; Yewdall S.J.; Polikarpov I.; Sawyer L. Bovine β-lactoglobulin at 1.8 Å Resolution – Still an Enigmatic Lipocalin. Structure 1997, 5, 481–495.
  • Kuwata K.; Hoshino M.; Forge V.; Era S.; Batt C.A.; Goto Y. Solution Structure and Dynamics of Bovine β-Lactoglobulin A. Protein Science 1999, 8, 2541–2545.
  • Edwards P.B.; Creamer L.K.; Jameson G.B. Structure and Stability of Whey Proteins. In Milk Proteins – From Expression to Food; Thompson, A.; Boland, M.; Singh, H.; Eds.; Elsevier: New York, 2009; 165–166.
  • Harvey B.J.; Bell E.; Brancaleon L. A Tryptophan Rotamer Located in a Polar Environment Probes pH-dependent Conformational Changes in Bovine Beta-lactoglobulin A. The Journal of Physical Chemistry B 2007, 111, 2610–2620.
  • Nucar A.; Maselli P.; Giliberti V.; Carbonaro M. Epicatechin-induced Conformational Changes in β-lactoglobulin B Monitored by FT-IR Spectroscopy. Springer Plus 2013, 2, 661.
  • Mazza G. Health aspects of natural colors. In Natural Food and Colorants Science and Technology; Lauro, G.J.; Francis, F.J.; Eds.; Marcel Decker: New York, 2000, pp 289–314.
  • Wang W.D.; Xu S.Y. Degradation Kinetics of Anthocyanins in Blackberry Juice and Concentrate. Journal of Food Engineering 2007, 82, 271–275.
  • Konczak I.; Zhang W. Anthocyanins – More than Nature’s Colours. Journal of Biomedicine and Biotechnology 2004, 5, 239–240.
  • Fennema O.R. Food Chemistry, 4th ed.; CRC Press: New York, 1996.
  • Gholami S.; Bordbar A.K. Exploring Binding Properties of Naringenin with Bovine β-Lactoglobulin: A Fluorescence, Molecular Docking and Molecular Dynamics Simulation Study. Biophysical Chemistry 2014, 33–42.
  • Soares S.; Mateus N.; de Freitas V. Interaction of Different Polyphenols with Bovine Serum Albumin (BSA) and Human Salivary r-Amylase (HSA) by Fluorescence Quenching. Journal of Agricultural and Food Chemistry 2007, 55, 6726–6735.
  • Rodríguez S.D.; von Staszewski M.; Pilosof A.M.R. Green Tea Polyphenols-Whey Proteins Nanoparticles: Bulk, Interfacial and Foaming Behavior. Food Hydrocolloids 2015, 50, 108–115.
  • Al-Hanish A.; Stanic-Vucinic D.; Mihailovic J.; Prodic I.; Minic S.; Stojadinovic M.; Radibratovic M.; Milcic M.; Cirkovic Velickovic T. Noncovalent Interactions of Bovine α-Lactalbumin with Green Tea Polyphenol, Epigalocatechin-3-Gallate. Food Hydrocolloids 2016, 61, 241–250.
  • Bonechi C.; Martini S.; Ciani L.; Lamponi S.; Rebmann H.; Rossi C.; Ristori S. Using Liposomes as Carriers for Polyphenolic Compounds: The Case of Trans-Resveratrol. PLoS One 2012, 7, e41438.
  • Seeram N.P.; Momin R.A.; Nair M.G.; Bourquin L.D. Cyclooxygenase Inhibitory and Antioxidant Cyanidin Glycosides in Cherries and Berries. Phytomedicine 2001, 8, 362–369.
  • Kang S.Y.; Seeram N.P.; Nair M.G.; Bourquin L.D. Tart Cherry Anthocyanins Inhibit Tumor Development in ApcMin Mice and Reduce Proliferation of Human Colon Cancer Cells. Cancer Letters 2003, 194, 13–19.
  • Bi S.; Yan L.; Pang B.; Wang Y. Investigation of Three Flavonoids Binding to Bovine Serum Albumin Using Molecular Fluorescence Technique. Journal of Luminescence 2012, 132, 132–140.
  • Arroyo-Maya I.J.; Campos-Terán J.; Hernández-Arana A.; McClements D. J. Characterization of Flavonoid-Protein Interactions Using Fluorescence Spectroscopy: Binding of Pelargonidin to Dairy Proteins. Food Chemistry 2016, 213, 431–439.
  • Dumitrașcu L.; Stănciuc N.; Aprodu I. New Insights Into Xanthine Oxidase Behavior upon Heating Using Spectroscopy and In Silico Approach. International Journal of Biological Macromolecules 2016, 88, 306–312.
  • Oancea A-M.; Turturică M.; Bahrim G.; Râpeanu G.; Stănciuc N. Phytochemicals and Antioxidant Activity Degradation Kinetics during Thermal Treatments of Sour Cherry Extract. LWT - Food Science and Technology 2017, 82, 139–146.
  • Blando F.; Gerardi C.; Nicoletti I. Sour Cherry (Prunus cerasus L) Anthocyanins as Ingredients for Functional Foods. Journal of Biomedicine and Biotechnology 2004, 5, 253–258.
  • Turturică M., Stănciuc N., Bahrim G., Râpeanu G. Effect of Thermal Treatment on Phenolic Compounds from Plum (Prunus domestica) Extracts – A Kinetic Study. Journal of Food Engineering 2016, 171, 200–207.
  • Aprodu I.; Ursache F.M.; Turturică M.; Râpeanu G.; Stănciuc N. Thermal stability of the Complex Formed between Carotenoids from Sea Buckthorn (Hippophae rhamnoides L.) and Bovine β-lactoglobulin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 173, 562–571.
  • Loch J.I.; Bonarek P.; Polit A.; Riès D.; Dziedzicka-Wasylewska M.; Lewiński K. Binding of 18-Carbon Unsaturated Fatty Acids to Bovine β-lactoglobulin-Structural and Thermodynamic Studies. International Journal of Biological Macromolecules 2013, 57, 226–231.
  • Hess B.; Kutzner C.; van der Spoel D.; Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation 2008, 4(3), 435–447.
  • Schneidman-Duhovny D.; Inbar Y.; Nussinov R.; Wolfson H.J. PatchDock and SymmDock: Servers for Rigid and Symmetric Docking. Nucleic Acids Research 2005, 33(suppl. 2), W363–W367.
  • Andrusier N.; Nussinov R.; Wolfson H.J. FireDock: Fast Interaction Refinement in Molecular Docking. Proteins: Structure, Functions, Bioinformatics 2007, 69(1), 139–159.
  • Laskowski R.A.; Swindells M.B. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. Journal of Chemical Information and Modeling 2011, 51(10), 2778–2786.
  • Lakowicz J. Principles of Fluorescence Spectroscopy; Kluwer Academic/Plenum Publishers: New York, 1999.
  • Klajnert B.; Stanisławska L.; Bryszewska M.; Pałecz B. Interactions between PAMAM Dendrimers and Bovine Serum Albumin. Biochimica et Biophysica Acta: Proteins Proteomics 2003, 1648, 115–126.
  • Mohammadi F.; Bordbar A.K.; Divsalar A.; Mohammadi K.; Saboury A. Interaction of Curcumin and Diacetylcurcumin with the Lipocalin Member β-lactoglobulin. Protein Journal 2009, 28, 117–123.
  • Ross P.D.; Subramanian S. Thermodynamics of Protein Association Reactions: forces Contributing to Stability. Biochemistry 1981, 20, 3096–3102.
  • Stănciuc N.; Aprodu I.; Râpeanu G.; Bahrim G. Fluorescence Spectroscopy and Molecular Modeling Investigations on the Thermally Induced Structural Changes of Bovine β-lactoglobulin. Innovative Food Science and Emerging Technologies 2012, 15, 50–56.
  • Roufik S.; Gauthier S.F.; Leng X.; Turgeon S.L. Thermodynamics of Binding Interactions between Bovine β-lactoglobulin A and the Antihypertensive Peptide β-Lg f142-148. Biomacromolecules 2006, 7, 419–426.
  • Morgan F.; Molle D.; Henry G.; Venien A.; Leonil J.; Peltre G.; Bouhallab S. Glycation of Bovine β-lactoglobulin: Effect on the protein structure. International Journal of Food Science & Technology 1999, 34, 429–435.
  • Sahihi M.; Heidari-Koholi Z.; Bordbar A. K. The interaction of Polyphenol Flavonoids with β-Lactoglobulin: Molecular Docking and Molecular Dynamics Simulation Studies. Journal of Macromolecular Science B 2012, 51, 2311–2323.
  • Liang L.; Tajmir-Riahi H.; Subirade M. Interaction of β-lactoglobulin with Resveratrol and Its Biological Implications. Biomacromolecules 2007, 9, 50–56.
  • Liang L.; Subirade M. Study of the Acid and Thermal Stability of β-lactoglobulin-ligand Complexes Using Fluorescence Quenching. Food Chemistry 2012, 132, 2023–2029.
  • Kontopidis G.; Holt C.; Sawyer L. Invited Review: β-lactoglobulin: Binding Properties, Structure, and Function. Journal of Dairy Science 2004, 84, 785–796.
  • Dufour E.; Genot C.; Haertlé T. Beta-lactoglobulin Binding Properties during Its Folding Changes Studied by Fluorescence Spectroscopy. Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology 1994, 1205, 105–112.
  • Dufour E.; Hoa G.H.B.; Haertlé T. High-pressure Effects on β-lactoglobulin Interactions with Ligands Studied by Fluorescence. Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology 1994, 1206, 166–172.
  • Narayan M.; Berliner L.J. Mapping Fatty Acid Binding to β-lactoglobulin: Ligand Binding is Restricted by Modification of Cys 121. Protein Science 1998, 7, 150–157.
  • Bhattacharjee C.; Das K.P. Thermal Unfolding and Refolding of β-lactoglobulin. An Intrinsic and Extrinsic Fluorescence Study. European Journal of Biochemistry 2000, 267, 3957–3964.
  • Eftink M.R. Fluorescence Techniques for Studying Protein Structure. Methods of Biochemical Analysis 1991, 35, 127–205.
  • Rodrigues R.M.; Martins A.J.; Ramos O.L.; Malcata F.X.; Teixeira J.A.; Vicente A.A. Influence of Moderate Electric Fields on Gelation of Whey Protein Isolate. Food Hydrocolloids 2015, 43, 329–339.
  • Das K.P.; Kinsella J.E. Effect of Heat Denaturation on the Adsorption of β-lactoglobulin at the Oil/Water Interface and on the Coalescence Stability of Emulsions. Journal of Colloid and Interface Science 1990, 139, 551–560.
  • Kuznetsova I.; Turoverov K.; Uversky V. Use of the Phase Diagram Method to Analyze the Protein Unfolding-Refolding Reactions: Fishing Out the “Invisible” Intermediates. Journal of Proteome Research 2004, 3, 485–494.
  • Kataeva I. A.; Uversky V.N.; Brewer J.M.; Schubot F.; Rose J.P.; Wang B.C.; Ljungdahl L.G. Interactions between Immunoglobulin-Like and Catalytic Modules in Clostridium thermocellum Cellulosomal Cellobiohydrolase CbhA. Protein Engineering, Design and Selection 2004, 17, 759–769.
  • Blanch E.W.; Hecht L.; Barron L.D. New Insight into the pH-dependent Conformational Changes in Bovine β-lactoglobulin from Raman Optical Activity. Protein Science 1999, 8, 1362–1367.
  • Seo J.A.; Hédoux A.; Guinet Y.; Paccou L.; Affouard F.; Lerbret A.; Descamps M. Thermal Denaturation of β-Lactoglobulin and Stabilization Mechanism by Trehalose Analyzed from Raman Spectroscopy Investigations. The Journal of Physical Chemistry B 2010, 114, 6675–6684.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.