1,563
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. vannamei protease: An eco-friendly nanobiocatalyst

, , &
Pages 1413-1423 | Received 31 Jan 2017, Accepted 18 Jun 2017, Published online: 17 Dec 2017

References

  • Dadshahi, Z.; Homaei, A.; Zeinali, F.; Sajedi, R.H.; Khajeh, K. Extraction and Purification of a Highly Thermostable Alkaline Caseinolytic Protease from Wastes Litopenaeus Vanamei Suitable for Food and Detergent Industries. Food Chemistry [Internet]. Elsevier Ltd 2016, 202, 110–115. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0308814616301030
  • Syshchyk, O.; Skryshevsky, V.A.; Soldatkin, O.O.; Soldatkin, A.P. Enzyme Biosensor Systems Based on Porous Silicon Photoluminescence for Detection of Glucose, Urea and Heavy Metals. Biosensors Bioelectronics [Internet]. Elsevier 2015, 66, 89–94. doi: 10.1016/j.bios.2014.10.075
  • Xiaoyan, Z.; Yuanyuan, J.; Zaijun, L.; Zhiguo, G.; Guangli, W. Improved Activity and Thermo-Stability of the Horse Radish Peroxidase with Graphene Quantum Dots and Its Application in Fluorometric Detection of Hydrogen Peroxide. Spectrochimica Acta Particle A Molecular Biomolecular Spectroscopic [Internet]. Elsevier B.V. 2016, 165, 106–113. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1386142516301603
  • Homaei, A.; Stevanato, R.; Etemadipour, R.; Hemmati, R. Purification, Catalytic, Kinetic and Thermodynamic Characteristics of a Novel Ficin from Ficus Johannis. Biocatal Agricultural Biotechnology [Internet]. Elsevier Ltd 2017, 10, 360–366. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1878818117300920
  • Homaei, A. Purification and Biochemical Properties of Highly Efficient Alkaline Phosphatase from Fenneropenaeus Merguiensis Brain. Journal Molecular Catalysis B Enzymes [Internet]. Elsevier B.V. 2015, 118, 16–22. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1381117715001216
  • Zeinali, F.; Homaei, A.; Kamrani, E. Sources of Marine Superoxide Dismutases: Characteristics and Applications. International Journal of Biological Macromolecule [Internet]. Elsevier B.V. 2015, 79, 627–637. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0141813015003943
  • Rouzbehan, S.; Moein, S.; Homaei, A.; Moein, M.R. Kinetics of Α-Glucosidase Inhibition by Different Fractions of Three Species of Labiatae Extracts: A New Diabetes Treatment Model. Pharmaceutical Biology [Internet]. Informa Healthcare USA, Inc 2017, 55, 1483–1488. Available from: https://www.tandfonline.com/doi/full/10.1080/13880209.2017.1306569
  • Tran, D.N.; Balkus, K.J. Perspective of Recent Progress in Immobilization of Enzymes. ACS Catalysis 2011, 1, 956–968.
  • Homaei, A.; Samari, F. Investigation of Activity and Stability of Papain by Adsorption on Multi-Wall Carbon Nanotubes. International Journal of Biological Macromolecule [Internet] 2017. [cited 2017 Apr 20]. Available from: http://www.sciencedirect.com/science/article/pii/S0141813017305160
  • Homaei, A.A.; Mymandi, A.B.; Sariri, R.; Kamrani, E.; Stevanato, R.; Etezad, S.-M.; et al. Purification and Characterization of a Novel Thermostable Luciferase from Benthosema Pterotum. Journal of Photochemistry and Photobiological B [Internet]. Elsevier B.V. 2013, 125, 131–136. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23811161
  • Xu, R.; Tang, R.; Zhou, Q.; Li, F.; Zhang, B. Enhancement of Catalytic Activity of Immobilized Laccase for Diclofenac Biodegradation by Carbon Nanotubes. Chemical Engineering Journal [Internet]. Elsevier B.V. 2015, 262, 88–95. doi: 10.1016/j.cej.2014.09.072
  • Homaei, A.; Barkheh, H.; Sariri, R.; Stevanato, R. Immobilized Papain on Gold Nanorods as Heterogeneous Biocatalysts. Amino Acids [Internet] 2014, 46, 1649–1657. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24658998
  • Homaei, A.; Etemadipour, R. Improving the Activity and Stability of Actinidin by Immobilization on Gold Nanorods. International Journal of Biological Macromolecule [Internet] 2015, 72, 1176–1181. Available from: http://www.sciencedirect.com/science/article/pii/S0141813014007053
  • Homaei, A. Enzyme Immobilization and Its Application in the Food Industry. In Advance Food Biotechnology, 1st Edn [Internet].; Rai, R.; Eds.; John Wiley & Sons, Ltd., 2015; 145–164. Available from: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118864557.html
  • Feng, W.; Ji, P. Enzymes Immobilized on Carbon Nanotubes. Biotechnology Advancement [Internet]. Elsevier Inc. 2011, 29, 889–895. doi: 10.1016/j.biotechadv.2011.07.007
  • Wang, Q.; Zhou, L.; Jiang, Y.; Gao, J. Improved Stability of the Carbon Nanotubes-Enzyme Bioconjugates by Biomimetic Silicification. Enzyme Microbiological Technology [Internet]. Elsevier Inc. 2011, 49, 11–16. doi: 10.1016/j.enzmictec.2011.04.007
  • Ansari, S.A.; Husain, Q. Potential Applications of Enzymes Immobilized On/In Nano Materials: A Review. Biotechnology Advancement [Internet]. Elsevier Inc. 2012, 30, 512–523. doi: 10.1016/j.biotechadv.2011.09.005
  • Malmiri, H.J.; Ali, M.; Jahanian, G.; Berenjian, A. Potential Applications of Chitosan Nanoparticles as Novel Support in Enzyme Immobilization. American Journal of Biochemistry and Biotechnology. 2012, 8, 203–219.
  • Rinaudo, M. Chitin and Chitosan: Properties and Applications. Progress Polymer Sciences 2006, 31, 603–632.
  • Moreno-Vásquez, M.J.; Valenzuela-Buitimea, E.L.; Plascencia-Jatomea, M.; Encinas-Encinas, J.C.; Rodríguez-Félix, F.; Sánchez-Valdes, S.; et al. Functionalization of Chitosan by a Free Radical Reaction: Characterization, Antioxidant and Antibacterial Potential. Carbohydrate Polymer 2017, 155, 117–127.
  • Zheningt, A.; Juningq, I.; Lus, H. Preparation of Chitosan Nanoparticles as Carrier for Immobilized Enzyme. Applied Biochemistry and Biotechnology 2007, 136, 77–96.
  • Aljawish, A.; Muniglia, L.; Klouj, A.; Jasniewski, J.; Scher, J.; Desobry, S. Characterization of Films Based on Enzymatically Modified Chitosan Derivatives with Phenol Compounds. Food Hydrocolloids 2016, 60, 551–558.
  • Gouda, M.; Elayaan, U.; Youssef, M.M. Synthesis and Biological Activity of Drug Delivery System Based on Chitosan Nanocapsules. Advancement Nanoparticles [Internet]. Scientific Research Publishing 2014, 3, 148–158. [cited 2016 Sep 12]. doi: 10.4236/anp.2014.34019
  • Berthold, A.; Cremer, K.; Kreuter, J. Preparation and Characterization of Chitosan Microspheres as Drug Carrier for Prednisolone Sodium Phosphate as Model for Anti-Inflammatory Drugs. Journal Control Release [Internet]. Elsevier 1996, 39, 17–25. [cited 2016 Sep 12]. Available from: http://linkinghub.elsevier.com/retrieve/pii/0168365995001298
  • Tian, X.X.; Groves, M.J. Formulation and Biological Activity of Antineoplastic Proteoglycans Derived from Mycobacterium Vaccae in Chitosan Nanoparticles. The Journal of Pharmacy and Pharmacology 1999, 51, 151–157.
  • Shi, W.; Wei, M.; Jin, L.; Li, C. Calcined Layered Double Hydroxides as a “Biomolecular Vessel” for Bromelain: Immobilization, Storage and Release. Journal Molecular Catalysis B Enzymes 2007, 47, 58–65.
  • Rudzinski, W.E.; Palacios, A.; Ahmed, A.; Lane, M.A.; Aminabhavi, T.M. Targeted Delivery of Small Interfering RNA to Colon Cancer Cells Using Chitosan and PEGylated Chitosan Nanoparticles. Carbohydrate Polymer [Internet]. 2016, 147, 323–332. [cited 2016 Sep 12]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27178938
  • Tang, Z.-X.; Qian, J.-Q.; Shi, L.-E. Characterizations of Immobilized Neutral Lipase on Chitosan Nano-Particles. Materials Letters [Internet]. 2007, 61, 37–40. [cited 2016 Sep 12]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0167577X06004587
  • Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analysis Biochemical [Internet]. 1976, 72, 248–254. [cited 2014 Jul 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/942051
  • Mehta, J.; Bhardwaj, N.; Bhardwaj, S.K.; Kim, K.-H.; Deep, A. Recent Advances in Enzyme Immobilization Techniques: Metal-Organic Frameworks as Novel Substrates. Coord Chemical Reviews 2016, 322, 30–40.
  • Wu, L.; Wu, S.; Xu, Z.; Qiu, Y.; Li, S.; Xu, H. Modified Nanoporous Titanium Dioxide as a Novel Carrier for Enzyme Immobilization. Biosensors Bioelectronics 2016, 80, 59–66.
  • Sirisha, V.L.; Jain, A.; Jain, A. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes. Advancement Food Nutritional Researcher 2016, 79, 179–211.
  • Xiao, A.; Xu, C.; Lin, Y.; Ni, H.; Zhu, Y.; Cai, H. Preparation and Characterization of Κ-Carrageenase Immobilized onto Magnetic Iron Oxide Nanoparticles. Electronic Journal of Biotechnology 2016, 19, 1–7.
  • Singh, R.K.; Tiwari, M.K.; Singh, R.; Lee, J.-K. From Protein Engineering to Immobilization: Promising Strategies for the Upgrade of Industrial Enzymes. International Journal Molecular Sciences [Internet]. 2013, 14, 1232–1277. [cited 2016 Oct 12]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23306150
  • Wu, C.; Xu, C.; Ni, H.; Yang, Q.; Cai, H.; Xiao, A. Preparation and Characterization of Tannase Immobilized onto Carboxyl-Functionalized Superparamagnetic Ferroferric Oxide Nanoparticles. Bioresource Technology 2016, 205, 67–74.
  • Homaei, A.; Saberi, D. Immobilization of Α-Amylase on Gold Nanorods: An Ideal System for Starch Processing. Process Biochemistry (Barking, London, England) [Internet]. 2015, 50:1394–9. Available from: http://www.sciencedirect.com/science/article/pii/S1359511315300118
  • Homaei, A.;. Enhanced Activity and Stability of Papain Immobilized on CNBr-activated Sepharose. International Journal of Biological Macromolecule [Internet]. 2015, 75, 373–377. Available from: http://www.sciencedirect.com/science/article/pii/S0141813015000665
  • Siebert, K.J.; Carrasco, A.; Lynn, P.Y. Formation of Protein−Polyphenol Haze in Beverages; Journal of Agricultural and Food Chemistry 1996, 44, 1997–2005.
  • Pinelo, M.; Zeuner, B.; Meyer, A.S. Juice Clarification by Protease and Pectinase Treatments Indicates New Roles of Pectin and Protein in Cherry Juice Turbidity. Food Bioproduction Processing 2010, 88, 259–265.
  • Homaei, A.; Etemadipour, R. Improving the Activity and Stability of Actinidin by Immobilization on Gold Nanorods. International Journal of Biological Macromolecule [Internet]. Elsevier B.V. 2015, 72, 1176–1181. doi: 10.1016/j.ijbiomac.2014.10.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.