1,046
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Structural and surface properties of whey protein from buffalo milk as influenced by exopolysaccharide

, , &
Pages S2323-S2331 | Received 06 Feb 2017, Accepted 23 Jun 2017, Published online: 03 Jan 2018

References

  • Corredig, M.; Sharafbafi, N.; Kristo, E. Polysaccharide-protein Interactions in Dairy Matrices, Control and Design of Structures. Food Hydrocolloids. 2011, 25,1833–1841.
  • De Kruif, C.G.; Tuinier, R. Polysaccharide Protein Interactions. Food Hydrocolloids 2001, 15, 555–563.
  • Zhao, Z.; Xiao Q. Effect of Chitosan on the Heat Stability of Whey Protein Solution as a Function of pH. Journal of the Science of Food and Agriculture 2017, 97, 1576–1581.
  • Mounsey, J.; O’Kennedy, B.; Fenelon, M.A.; Brodkorb, A. The Effect of Heating on β-Lactoglobulin–chitosan Mixtures as Influenced by pH and Ionic Strength. Food Hydrocolloids 2008, 22, 65–73.
  • Girard, M.; Schaffer-Lequart, C. Attractive Interactions between Selected Anionic Exopolysaccharides and Milk Proteins. Food Hydrocolloids 2008, 22,1425–1434.
  • Folkenberg, D.M.; Dejmek, P.; Skriver, A.; Ipsen R. Interactions between EPS-producing Streptococcus Thermophilus Strains in Mixed Yoghurt Cultures. Journal of Dairy Research 2006, 73, 385–393.
  • Ayala-Hernandez, I.; Goff, H.D.; Corredig, M. Interactions between Milk Proteins and Exopolysaccharides Produced by Lactococcus Lactis Observed by Scanning Electron Microscopy. Journal of Dairy Science 2008, 91, 2583–90.
  • Kristo, E.; Miao, Z.; Corredig, M. The Role of Exopolysaccharide Produced by Lactococcus Lactis Subsp. Cremoris in Structure Formation and Recovery of Acid Milk Gels. International Dairy Journal 2011, 21, 656–662.
  • Yang, T.; Wu, K.; Wang, F.; Liang, X.; Liu, Q.; Li, G.; Li, Q. Effect of Exopolysaccharides from Lactic Acid Bacteria on the Texture and Microstructure of Buffalo Yoghurt. International Dairy Journal 2014, 34, 252–256.
  • Tuinier, R.; Dhont, J.K.G.; & De Kruif, C.G. Depletion-induced Phase Separation of Aggregated Whey Protein Colloids by an Exocellular Polysaccharide. Langmuir 2000, 16, 1497–1507.
  • Zisu, B.; Shah, N.P. Effects of pH, Temperature, Supplementation with Whey Protein Concentrate, and Adjunct Cultures on the Production of Exopolysaccharides by Streptococcus Thermophilus 1275. Journal of Dairy Science 2003, 86, 3405–3415.
  • Amatayakul, T.; Halmos, A.L.; Sherkat, F.; Shah, N.P. Physical Characteristics of Yoghurts Made Using Exopolysaccharide-producing Starter Cultures and Varying Casein to Whey Protein Ratios. International Dairy Journal 2006, 16, 40–51.
  • McSweeney, P.; Fox, P.F. Advanced Dairy Chemistry Proteins Part A, 3rd ed.; Springer: New York, 2003.
  • Jr, F.Y., Zhang, M.; Chen, J.; Liang, Y. Structural Changes of α -Lactalbumin Induced by Low pH and Oleic Acid. Biochimica et Biophysica Acta 2006, 1764, 1389–1396.
  • Râpeanu, G.; Bahrim, G.; Aprodu, I. pH and Heat-induced Structural Changes of Bovine Apo-a-lactalbumin. Food Chemistry 2012, 131, 956–963.
  • Renard, D.; Lefebvre, J. Effects of pH and Salt Environment on the Association of i-Lactoglobulin Revealed by Intrinsic Uorescence Studies. International Journal of Biological Macromolecules 1998, 22, 41–49.
  • Mills, O.E.; Creamer, L.K. A Conformational Change in Bovine Beta-lactoglobulin at Low pH. Biochimica et Biophysica Acta 1975, 379, 618–626.
  • Zinoviadou, K.G.; Scholten, E.; Moschakis, T.; Biliaderis, C.G. Properties of Emulsions Stabilised by Sodium Caseinate-chitosan Complexes. Internaional Dairy Jounal 2012, 26, 94–101.
  • Stone, A.K.; Teymurova, A.; Dang, Q.; Abeysekara, S.; Karalash, A.; Nickerson, M.T. Formation and Functional Attributes of Electrostatic Complexes Involving Napin Protein Isolate and Anionic Polysaccharides. European Food Research and Technology 2014, 238, 773–780.
  • Woody, R. Appliction of the Bergson Model to the Optical Properties of Chiral Disulphide. Tetrahedron 1973, 29, 1273–1283.
  • Manderson, G.A.; Creamer, L.K.; Hardman, M.J. Effect of Heat Treatment on the Circular Dichroism Spectra of Bovine Beta-lactoglobulin A, B, and C. Journal of Agriculture and Food Chemistry 1999, 47, 4557–67.
  • De Jongh, H.H.J.; Gröneveld, T.; de Groot, J. Mild Isolation Procedure Discloses New Protein Structural Properties of β-Lactoglobulin. Journal of Dairy Science 2001, 84, 562–571.
  • Chandrapala, J.; Zisu, B.; Palmer, M.; Kentish, S.; Ashokkumar, M. Effects of ultrasound on the Thermal and Structural Characteristics of Proteins in Reconstituted Whey Protein Concentrate. Ultrasonics Sonochemistry 2011, 18, 951–957.
  • Matsuura, J.E.; Manning, M.C. Heat-Induced Gel Formation of Beta-lactoglobulin: A Study on the Secondary and Tertiary Structure as Followed by Circular Dichroism Spectroscopy. Journal of Agriculture and Food Chemistry 1994, 42, 1650–1656.
  • Shimizu, M.; Saito, M.; Yamauchi, K. Emulsifying and Structural Properties of Beta-Lactoglobulin at Different pHs. Agricultural and Biological Chemistry 1985, 49, 189–194.
  • Permyakov, E.; Berliner, L.J. α-Lactalbumin: Structure and Function. FEBS Letters 2000, 473, 269–274.
  • Uhrínová, S.; Smith, M.H.; Jameson, G.B.; Uhrín, D.; Sawyer, L.; Barlow, P.N. Structural Changes Accompanying pH-induced Dissociation of the Beta-Lactoglobulin Dimer. Biochemistry 2000, 39, 3565–3574.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.