2,615
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Application of Vis/SNIR hyperspectral imaging in ripeness classification of pear

&
Pages S3149-S3163 | Received 07 Mar 2017, Accepted 07 Jul 2017, Published online: 05 Feb 2018

References

  • Li, J.; Huang, W.; Zhao, C.; Zhang, B. A Comparative Study for the Quantitative Determination of Soluble Solids Content, pH and Firmness of Pears by Vis/NIR Spectroscopy. J. Food Eng. 2013, 116(2), 324–332. DOI: 10.1016/j.jfoodeng.2012.11.007.
  • Paz, P.; Sánchez, M. T.; Pérez-Marín, D.; Guerrero, J. E.; Garrido-Varo, A. Instantaneous Quantitative and Qualitative Assessment of Pear Quality Using near Infrared Spectroscopy. Comput. Electron. Agric. 2009, 69(1), 24–32. DOI: 10.1016/j.compag.2009.06.008.
  • Travers, S.; Bertelsen, M. G.; Petersen, K. K.; Kucheryavskiy, S. V. Predicting Pear (Cv. Clara Frijs) Dry Matter and Soluble Solids Content with near Infrared Spectroscopy. Lebenson Wiss Technol. 2014, 59(2, Part 1), 1107–1113. DOI: 10.1016/j.lwt.2014.04.048.
  • Fan, S.; Huang, W.; Guo, Z.; Zhang, B.; Zhao, C. Prediction of Soluble Solids Content and Firmness of Pears Using Hyperspectral Reflectance Imaging. Food Anal. Methods. 2015, 8, 1936–1946. DOI: 10.1007/s12161-014-0079-1.
  • Lu, R.;. Detection of Bruises on Apples Using Near-Infrared Hyperspectral Imaging. T Asae. 2003, 46(2), 523–530.
  • Peng, Y.; Lu, R. Analysis of Spatially Resolved Hyperspectral Scattering Images for Assessing Apple Fruit Firmness and Soluble Solids Content. Postharvest Biol. Technol. 2008, 48(1), 52–62. DOI: 10.1016/j.postharvbio.2007.09.019.
  • Ariana, D. P.; Lu, R. Detection of Internal Defect in Pickling Cucumbers Using Hyperspectral Transmittance Imaging. T Asabe. 2008, 51(2), 705–713. DOI: 10.13031/2013.24367.
  • Gowen, A. A.; Taghizadeh, M.; O’Donnell, C. P. Identification of Mushrooms Subjected to Freeze Damage Using Hyperspectral Imaging. J. Food Eng. 2009, 93(1), 7–12. DOI: 10.1016/j.jfoodeng.2008.12.021.
  • Leiva-Valenzuela, G. A.; Lu, R.; Aguilera, J. M. Prediction of Firmness and Soluble Solids Content of Blueberries Using Hyperspectral Reflectance Imaging. J. Food Eng. 2013, 115(1), 91–98. DOI: 10.1016/j.jfoodeng.2012.10.001.
  • Lee, W. H.; Kim, M. S.; Lee, H.; Delwiche, S. R.; Bae, H.; Kim, D. Y.; Cho, B. K. Hyperspectral Near-Infrared Imaging for the Detection of Physical Damages of Pear. J. Food Eng. 2014, 130, 1–7. DOI: 10.1016/j.jfoodeng.2013.12.032.
  • Cubero, S.; Aleixos, N.; Moltó, E.; Gómez-Sanchis, J.; Blasco, J. Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables. Food. Bioproc. Tech. 2011, 4(4), 487–504. DOI: 10.1007/s11947-010-0411-8.
  • Wu, D.; Sun, D. W. Advanced Applications of Hyperspectral Imaging Technology for Food Quality and Safety Analysis and Assessment: A Review — Part II: Applications. Innov. Food Sci. & Emerg. Technol. 2013, 19(0), 15–28. DOI: 10.1016/j.ifset.2013.04.016.
  • Qin, J.; Chao, K.; Kim, M. S.; Lu, R.; Burks, T. F. Hyperspectral and Multispectral Imaging for Evaluating Food Safety and Quality. J. Food Eng. 2013, 118(2), 157–171. DOI: 10.1016/j.jfoodeng.2013.04.001.
  • Huang, H.; Liu, L.; Ngadi, M. Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety. Sens. J. 2014, 14(4), 7248–7276. DOI: 10.3390/s140407248.
  • Pu, Y. Y.; Feng, Y. Z.; Sun, D. W. Recent Progress of Hyperspectral Imaging on Quality and Safety Inspection of Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2015a, 14(2), 176–188. DOI: 10.1111/1541-4337.12123.
  • Moreda, G. P.; Ortiz-Cañavate, J.; García-Ramos, F. J.; Ruiz-Altisent, M. Non-Destructive Technologies for Fruit and Vegetable Size Determination – A Review. J. Food Eng. 2009, 92(2), 119–136. DOI: 10.1016/j.jfoodeng.2008.11.004.
  • Alfatni, M. S.; Mohamed Shariff, A. R.; Abdullah, M. Z.; Ben Saeed, O. M.; Ceesay, O. M. Recent Methods and Techniques of External Grading Systems for Agricultural Crops Quality Inspection – Review. Ijfe. 2011, 7(3), Art. 10. DOI: 10.2202/1556-3758.1932.
  • Costa, G.; Noferini, M.; Andreotti, C. Non-Destructive Determination of Internal Quality in Intact Pears by near Infrared Spectroscopy. Acta Hortic. 2002, 596, 821–825. DOI: 10.17660/ActaHortic.2002.596.142.
  • Liu, Y. D.; Ying, Y. B.; Fu, X. P.; Lu, H. S. Experiments on Predicting Sugar Content in Apples by FT-NIR Technique. J. Food Eng. 2007a, 80, 986–989. DOI: 10.1016/j.jfoodeng.2006.06.035.
  • Liu, Y. D.; Chen, X. M.; Sun, X. D.; Ying, Y. B. Non-Destructive Measurement of Pear Internal Quality Indices by Visible and Near-Infrared Spectrometric Techniques. New Zeal. J. Agr. Res. 2007b, 50, 1051–1057. DOI: 10.1080/00288230709510385.
  • Nicolai, B. M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K. I.; Lammertyn, J. Nondestructive Measurement of Fruit and Vegetable Quality by Means of NIR Spectroscopy: A Review. Postharvest Biol. Technol. 2007, 46, 99–118. DOI: 10.1016/j.postharvbio.2007.06.024.
  • Shao, Y. H.; He, Y.; Bao, Y. D.; Mao, J. Y. Near-Infrared Spectroscopy for Classification of Oranges and Prediction of the Sugar Content. Int. J. Food. Prop. 2009, 12, 644–658. DOI: 10.1080/10942910801992991.
  • Louw, E. D.; Theron, K. I. Robust Prediction Models for Quality Parameters inJapanese Plums (Prunussalicina L.) Using NIR Spectroscopy. Postharvest Biol. Technol. 2010, 58, 176–184. DOI: 10.1016/j.postharvbio.2010.07.001.
  • Morales-Sillero, A.; Fernandez-Cabanas, V. M.; Casanova, L.; Jimenez, M. R.; Suarez, M. P.; Rallo, P. Feasibility of NIR Spectroscopy for Non-Destructive Characterization of Table Olive Traits. J. Food Eng. 2011, 107, 99–106. DOI: 10.1016/j.jfoodeng.2011.05.039.
  • Liu, D.; Sun, D. W.; Zeng, X. A. Recent Advances in Wavelength Selection Techniques for Hyperspectral Image Processing in the Food Industry. Food. Bioproc. Tech. 2015, 7, 307–323. DOI: 10.1007/s11947-013-1193-6.
  • Khodabakhshian, R.; Emadi, B.; Khojastehpour, M.; Golzarian, M. R. Combination of Conventional Imaging and Spectroscopy Methods for Food Quality Evaluation. 4th International Workshop on Computer Science and Engineering, United Arab Emirates, Dubai 2014.
  • Chao, K. L.; Yang, C. C.; Kim, M. S. Line-Scan Spectral Imaging System for Online Poultry Carcass Inspection. J. Food Process. Eng. 2011, 34(1), 125–143. DOI: 10.1111/j.1745-4530.2008.00341.x.
  • Xiong, Z.; Sun, D. W.; Pu, H.; Zhu, Z. Combination of Spectra and Texture Data of Hyperspectral Imaging for Differentiating between Free-Range and Broiler Chicken Meats. Lebenson Wiss Technol. 2015, 60, 649–655. DOI: 10.1016/j.lwt.2014.10.021.
  • ElMasry, G.; Wang, N.; ElSayed, A.; Ngadi, M. Hyperspectral Imaging for Nondestructive Determination of Some Quality Attributesfor Strawberry. J. Food Eng. 2007, 81(1), 98–107. DOI: 10.1016/j.jfoodeng.2006.10.016.
  • Cen, H.; Lu, R.; Mendoza, F. A.; Ariana, D. P. Peach Maturity/Quality Assessment Using Hyperspectral Imaging-Based Spatially Resolved Technique. In: Proc. SPIE 8027, Sensing for agriculture and food quality and safety III, 80270L, 02 June 2011, Bellingham, USA.
  • Rajkumar, P.; Wang, N.; Eimasry, G.; Raghavan, G. S. V.; Gariepy, Y. Studies on Banana Fruit Quality and Maturity Stages Using Hyperspectral Imaging. J. Food Eng. 2012, 108(1), 194–200. DOI: 10.1016/j.jfoodeng.2011.05.002.
  • Zhu, Q.; He, C.; Lu, R.; Mendoza, F. Ripeness Evaluation of ‘Sun Bright’ Tomato Using Optical Absorption and Scattering Properties. Postharvest Biol. Technol. 2015, 103, 27–34. DOI: 10.1016/j.postharvbio.2015.02.007.
  • Lleo, L.; Roger, J. M.; Herrero-Langreo, A.; Diezma-Iglesias, B.; Barreiro, P. Comparison of Multispectral Indexes Extracted from Hyperspectral Images for the Assessment of Fruit Ripening. J. Food Eng. 2011, 104(4), 612–620. DOI: 10.1016/j.jfoodeng.2011.01.028.
  • Huang, W.; Li, J.; Wang, Q.; Chen, L. Development of a Multispectral Imaging System for Online Detection of Bruises on Apples. J. Food Eng. 2015, 146, 62–71. DOI: 10.1016/j.jfoodeng.2014.09.002.
  • Liu, D.; Sun, D. W.; Zeng, X. A. Recent Advances in Wavelength Selection Techniques for Hyperspectral Image Processing in the Food Industry. Food. Bioproc. Tech. 2014a, 7, 307–323. DOI: 10.1007/s11947-013-1193-6.
  • Pu, H.; Sun, D. W.; Ma, J.; Cheng, J. H. Classification of Fresh and Frozen-Thawed Pork Muscles Using Visible and near Infrared Hyperspectral Imaging and Textural Analysis. Meat Sci. 2015b, 99, 81–88. DOI: 10.1016/j.meatsci.2014.09.001.
  • Li, X. L.; Nie, P. C.; Qiu, Z. J.; He, Y. Using Wavelet Transform and Multi-Class Least Square Support Vector Machine in Multi-Spectral Imaging Classification of Chinese Famous Tea. Expert Syst. Appl. 2011, 38(9), 11149–11159. DOI: 10.1016/j.eswa.2011.02.160.
  • Chong, L. G.; Jun, C. H. Performance of Some Variable Selection Methods When Multi Collinearity Is Present. Chemometr. Intell. Lab. 2005, 78(1), 103–112. DOI: 10.1016/j.chemolab.2004.12.011.
  • Barbin, D. F.; ElMasry, G.; Sun, D. W.; Allen, P. Nondestructive Determination of Chemical Composition in Intact and Minced Pork by Near-Infrared Hyperspectral Imaging. Food Chem. 2013a, 138(2–3), 1162–1171. DOI: 10.1016/j.foodchem.2012.11.120.
  • Qiao, J.; Wang, N.; Ngadi, M. O.; Gunenc, A.; Monroy, M.; Gariepy, C. Prediction of Drip-Loss, pH, and Color for Pork Using a Hyperspectral Imaging Technique. Meat Sci. 2007, 76(1), 1–8. DOI: 10.1016/j.meatsci.2006.06.031.
  • Tao, F.; Peng, Y.; Li, Y.; Chao, K.; Dhakal, S. Simultaneous Determination of Tenderness and Escherichia Coli Contamination of Pork Using Hyperspectral Scattering Technique. Meat Sci. 2012, 90(3), 851–857. DOI: 10.1016/j.meatsci.2011.11.028.
  • Chang, Y. L.;. A Simulated Annealing Feature Extraction Approach for Hyperspectral Images. Future Gener. Comput. Syst. 2011, 27(4), 419–426. DOI: 10.1016/j.future.2010.08.008.
  • Pu, H.; Kamruzzaman, M.; Sun, D. W. Selection of Feature Wavelengths for Developing Multispectral Imaging a Systems for Quality, Safety and Authenticity of Muscle Foods- a Review. Trends Food Sci. Technol. 2015c, 45, 86–104. DOI: 10.1016/j.tifs.2015.05.006.
  • Araujo, M. C. U.; Saldanha, T. C. B.; Galva, R. K. H.; Yoneyama, T.; Chame, H. C.; Visani, V. The Successive Projections Algorithm for Variable Selection in Spectroscopic Multicomponent Analysis. Chemometr. Intell. Lab. 2001, 57, 65–73. DOI: 10.1016/S0169-7439(01)00119-8.
  • Galvão, R. K. H.; Araujo, M. C. U.; Fragoso, W. D.; Silva, E. C.; Jose, G. E.; Soares, S. F. C. (A Variable Elimination Method Toimprove the Parsimony of MLR Models Using the Successive Projections Algorithm. Chemometr. Intell. Lab. 2008, 92(1), 83–91. DOI: 10.1016/j.chemolab.2007.12.004.
  • He, H. J.; Wu, D.; Sun, D. W. Potential of Hyperspectral Imaging Combined with Chemometric Analysis for Assessing and Visualizing Tenderness Distribution in Raw Farmed Salmon fillets. J. Food Eng. 2014, 126, 156–164. DOI: 10.1016/j.jfoodeng.2013.11.015.
  • Pu, H.; Sun, D. W.; Ma, J.; Liu, D.; Cheng, J. H. Using Wavelet Textural Features of Visible and near Infrared Hyperspectral Image to Differentiate between Fresh and Frozen Thawed Pork. Food. Bioproc. Tech. 2014, 7(11), 3088–3099. DOI: 10.1007/s11947-014-1330-x.
  • Haralick, R. M.; Shanmugam, K. S. Combined Spectral and Spatial Processing of ERTS Imagery Data. Remote Sens. Environ. 1974, 3(1), 3–13. DOI: 10.1016/0034-4257(74)90033-9.
  • Pydipati, R.; Burks, T. F.; Lee, W. S. Identification of Citrus Disease Using Color Texture Features and Discriminant Analysis. Comput. Electron. Agric. 2006, 52(1), 49–59. DOI: 10.1016/j.compag.2006.01.004.
  • Tournier, C.; Grass, M.; Zope, D.; Salles, C.; Bertrand, D. Characterizations of Bread Break down during Mastication by Image Texture Analysis. J. Food Eng. 2012, 113(4), 615–622. DOI: 10.1016/j.jfoodeng.2012.07.015.
  • Wold, S.; Sjostrom, M. SIMCA: A Method for Analyzing Chemical Data in Terms of Similarity and Analogy. In Chemometrics: Theory and Application. ACS Symposium Series; Kowalski, B., Eds.; American Chemical Society: Washington DC, 1977; Vol. 52. pp. 243.
  • Suykens, J. A. K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9(3), 293–300. DOI: 10.1023/A:1018628609742.
  • Khodabakhshian, R.; Emadi, B.; Khojastehpour, M.; Golzarian, M. R.; Sazgarnia, A. Nondestructive Evaluation of Maturity and Quality Parameters of Pomegranate Fruit by Visible/Near Infrared Spectroscopy. Int. J. Food. Prop. 2017, 20, 41–52. DOI: 10.1080/10942912.2015.1126725.
  • Khodabakhshian, R.; Emadi, B.; Khojastehpour, M.; Golzarian, M. R.; Sazgarnia, A. Development of a Multispectral Imaging System for Online Quality Assessment of Pomegranate Fruit. Int. J. Food. Prop. 2017, 20, 107–118. DOI: 10.1080/10942912.2016.1144200.
  • Galtier, O.; Abbas, O.; Le Driau, Y.; Rebufa, C.; Kister, J.; Artaud, J.; Dupuy, N. Comparison of PLS1-DA, PLS2-DA and SIMCA for Classification by Origin of Crude Petroleum Oils by MIR and Virgin Olive Oils by NIR for Different Spectral Regions. Vib. Spectrosc. 2011, 55, 132–140. DOI: 10.1016/j.vibspec.2010.09.012.
  • Mireei, S. A.; Sadeghi, M. Detecting Bunch Withering Disorder in Date Fruit by near Infrared Spectroscopy. J. Food Eng. 2013, 114(3), 397–403. DOI: 10.1016/j.jfoodeng.2012.08.032.
  • Sirisomboon, P.; Hashimoto, Y.; Tanaka, M. Study on Non-Destructive Evaluation Methods for Defect Pods for Green Soybean Processing by Near-Infrared Spectroscopy. J. Food Eng. 2009, 93(4), 502–512. DOI: 10.1016/j.jfoodeng.2009.02.019.
  • Wei, X.; Liu, F.; Lee, H.; Qiu, Z.; Shao, Y.; He, Y. Ripeness Classification of Astringent Persimmon Using Hyperspectral Imaging Technique. Food. Bioproc. Tech. 2014, 7, 1371–1380. DOI: 10.1007/s11947-013-1164-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.