1,407
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

DNA protection activity of a hydroethanol extract and six polyphenol monomers from Morus alba L. (mulberry) twig

, , &
Pages 2207-2219 | Received 16 Feb 2017, Accepted 14 Aug 2017, Published online: 28 Dec 2017

References

  • Ramos, A. A.; Azqueta, A.; Pereira-Wilson, C.; Collins, A. R. Polyphenolic Compounds from Salvia Species Protect Cellular DNA from Oxidation and Stimulate DNA Repair in Cultured Human Cells. Journal of Agricultural and Food Chemistry 2010, 58, 7465–7471. doi:10.1021/jf100082p
  • Hsieh, C. L.; Yen, G. C.; Chen, H. Y. Antioxidant Activities of Phenolic Acids on Ultraviolet Radiation-Induced Erythrocyte and Low Density Lipoprotein Oxidation. Journal of Agricultural and Food Chemistry 2005, 53, 6151–6155.
  • Shi, Y. W.; Wang, C. P.; Wang, X.; Zhang, Y. L.; Liu, L.; Wang, R. W.; Ye, J. F.; Hu, L. S.; Kong, L. D. Uricosuric and Nephroprotective Properties of Ramulus Mori Ethanol Extract in Hyperuricemic Mice. Journal of Ethnopharmacology 2012, 143, 896–904.
  • Dizdaroglu, M.; Jaruga, P.; Birincioglu, M.; Rodriguez, H. Free Radical-Induced Damage to DNA: Mechanisms and Measurement 1, 2. Free Radical Biology and Medicine 2002, 32, 1102–1115.
  • Parman, T.; Wiley, M. J.; Wells, P. G. Free Radical-Mediated Oxidative DNA Damage in the Mechanism of Thalidomide Teratogenicity. Nature Medicine 1999, 5, 582–585.
  • Haywood, R.; Rogge, F.; Lee, M. Protein, Lipid, and DNA Radicals to Measure Skin UVA Damage and Modulation by Melanin. Free Radical Biology & Medicine 2008, 44, 990–1000.
  • Petruk, G.; Raiola, A.; Del Giudice, R.; Barone, A.; Frusciante, L.; Rigano, M. M.; Monti, D. M. An Ascorbic Acid-Enriched Tomato Genotype to Fight UVA-induced Oxidative Stress in Normal Human Keratinocytes. Journal of Photochemistry and Photobiology B: Biology 2016, 163, 284–289.
  • Douki, T.; Reynaud-Angelin, A.; Cadet, J.; Sage, E. Bipyrimidine Photoproducts Rather than Oxidative Lesions are the Main Type of DNA Damage Involved in the Genotoxic Effect of Solar UVA Radiation. Biochemistry 2003, 42, 9221–9226.
  • Zastrow, L.; Groth, N.; Klein, F.; Kockott, D.; Lademann, J.; Renneberg, R.; Ferrero, L. The Missing Link - Light-Induced (280-1,600 Nm) Free Radical Formation in Human Skin. Skin Pharmacology and Physiology 2009, 22, 31–44.
  • Jackson, M. J.;. Free Radicals in Skin and Muscle: Damaging Agents or Signals for Adaptation? Proceedings of the Nutrition Society 1999, 58, 673–676. doi:10.1017/S0029665199000877
  • Jung, K.; Seifert, M.; Herrling, T.; Fuchs, J. UV-generated Free Radicals (FR) in Skin: Their Prevention by Sunscreens and Their Induction by Self-Tanning Agents. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2008, 69, 1423–1428. doi:10.1016/j.saa.2007.09.029
  • Li, X. K.; Yao, C. C.; Xu, H.; Zheng, Q.; Huang, Y. D.; Liu, S. Z. Study of Effect of UV Ray on Keratinocyte and Its Protection. China Surfactant Detergent & Cosmetics 2002, 32, 30–32.
  • Davidson, P. G.; Touger-Decker, R. Chemopreventive Role of Fruits and Vegetables in Oropharyngeal Cancer. Nutrition in Clinical Practice 2009, 24, 250–260.
  • Romeu, M.; Rubio, L.; Sanchez-Martos, V.; Castaner, O.; De La Torre, R.; Valls, R. M.; Ras, R.; Pedret, A.; Catalan, U.; De Las Hazas, M. D. L.; Motilva, M. J.; Fito, M.; Sola, R.; Giralt, M., Virgin Olive Oil Enriched with Its Own Phenols or Complemented with Thyme Phenols Improves DNA Protection against Oxidation and Antioxidant Enzyme Activity in Hyperlipidemic Subjects. Journal of Agricultural and Food Chemistry 2016, 64, 1879–1888.
  • De Camargo, A. C.; Regitano-d’Arce, M. A. B.; Biasoto, A. C. T.; Shahidi, F. Low Molecular Weight Phenolics of Grape Juice and Winemaking Byproducts: Antioxidant Activities and Inhibition of Oxidation of Human Low-Density Lipoprotein Cholesterol and DNA Strand Breakage. Journal of Agricultural and Food Chemistry 2014, 62, 12159–12171.
  • Salem, M. A. I.; Marzouk, M. I.; El-Kazak, A. M. Synthesis and Characterization of Some New Coumarins with in Vitro Antitumor and Antioxidant Activity and High Protective Effects against DNA Damage. Molecules 2016, 21, 249.
  • Fang, R.-M.; Tao, X.-Q.; Huang, M.-Y. Study on the anti-Oxidation and Protective Effect of Red Ginseng, Shengshai Ginseng, American Ginseng on DNA Damage. Journal-Sichuan University Natural Science Edition 2003, 40, 1157–1160.
  • Su, W.; Tang, S. T.; Xie, C. Z.; Mu, Y. C.; Li, Z. X.; Yang, X. H.; Qiu, S. Y. Antioxidant and DNA Damage Protection Activities of Duck Gizzard Peptides by Chemiluminescence Method. International Journal of Food Properties 2016, 19, 760–767.
  • Boubaker, J.; Skandrani, I.; Bouhlel, I.; Ben Sghaier, M.; Neffati, A.; Ghedira, K.; Chekir-Ghedira, L. Mutagenic, Antimutagenic and Antioxidant Potency of Leaf Extracts from Nitraria Retusa. Food and Chemical Toxicology 2010, 48, 2283–2290.
  • Chan, S.; Li, S.; Kwok, C.; Benzie, I.; Szeto, Y.; Guo, D. J.; He, X.; Yu, P. Antioxidant Activity of Chinese Medicinal Herbs. Pharmaceutical Biology 2008, 46, 587–595.
  • Qu, Y.; Li, C. X.; Zhang, C.; Zeng, R.; Fu, C. M. Optimization of Infrared-Assisted Extraction of Bletilla Striata Polysaccharides Based on Response Surface Methodology and Their Antioxidant Activities. Carbohydrate Polymers 2016, 148, 345–353.
  • Cao, W.; Chen, W. J.; Zheng, X. H.; Zheng, J. B. Modified Method to Evaluate the Protection of the Antioxidants against Hydroxyl Radical-Mediated DNA Damage. Acta Nutrimenta Sinica 2008, 30, 74–77.
  • Ikeoka, S.; Nakahara, T.; Iwahashi, H.; Mizushina, Y. The Establishment of an Assay to Measure DNA Polymerase-Catalyzed Repair of UVB-induced DNA Damage in Skin Cells and Screening of DNA Polymerase Enhancers from Medicinal Plants. International Journal of Molecular Sciences 2016, 17, 667.
  • Kootstra, A.;. Protection from UVB-induced DNA-damage by Flavonoids. Plant Molecular Biology 1994, 26, 771–774.
  • Webster, R. P.; Gawde, M. D.; Bhattacharya, R. K. Protective Effect of Rutin, a Flavonol Glycoside, on the Carcinogen-Induced DNA Damage and Repair Enzymes in Rats. Cancer Letters 1996, 109, 185–191.
  • Chang, L. W.; Juang, L. J.; Wang, B. S.; Wang, M. Y.; Tai, H. M.; Hung, W. J.; Chen, Y. J.; Huang, M. H. Antioxidant and Antityrosinase Activity of Mulberry (Morus Alba L.) Twigs and Root Bark. Food and Chemical Toxicology 2011, 49, 785–790.
  • Park, H. M.; Hong, J.-H. Effect of Extraction Methods on Antioxidant Activities of Mori Ramulus. Journal of the Korean Society of Food Science and Nutrition 2014, 43, 1709–1715.
  • Zhang, Z.; Shi, L. Detection of Antioxidant Active Compounds in Mori Ramulus by HPLC-MS-DPPH. China Journal of Chinese Materia Medica 2012, 37, 800–802.
  • Zhang, Z. F.; Jin, J.; Shi, L. G. Antioxidant Properties of Ethanolic Extract from Ramulus Mori (Sangzhi). Food Science and Technology International 2009, 15, 435–444.
  • Wang, Y. C.; Wu, C.; Chen, H.; Zhang, Y.; Xu, L.; Huang, X. Z. Antioxidant Activities of Resveratrol, Oxyresveratrol, Esveratrol, Mulberroside A from Cortex Mori. Food Science 2011, 15, 030.
  • Zhang, Z.-S.; He, W.; Liu, T. T.; Shi, S.; Li, S. Antioxidant Activity of Resveratrol in Vitro. Food Science 2012, 11, 055.
  • Chua, L. S.;. A Review on Plant-Based Rutin Extraction Methods and Its Pharmacological Activities. Journal of Ethnopharmacology 2013, 150, 805–817.
  • Baghel, S. S.; Shrivastava, N.; Baghel, R. S.; Agrawal, P.; Rajput, S. A Review of Quercetin: Antioxidant and Anticancer Properties. World Journal Pharmaceutical Pharmaceut Sciences 2012, 1, 146–160.
  • Yang, J. Y.; Lee, H. S. Evaluation of Antioxidant and Antibacterial Activities of Morin Isolated from Mulberry Fruits (Morus Alba L.). Journal of the Korean Society for Applied Biological Chemistry 2012, 55, 485–489.
  • Zhou, L.;. Studies on Extraction Purification and Antioxidant Activity of Flavonoids from Mulberry Branch; Southwest University, 2011.
  • Liu, C.; Xiang, W.; Yu, Y.; Shi, Z.-Q.; Huang, X.-Z.; Xu, L. Comparative Analysis of 1-Deoxynojirimycin Contribution Degree to α-glucosidase Inhibitory Activity and Physiological Distribution in Morus Alba L. Industrial Crops and Products 2015, 70, 309–315.
  • Chen, M. L.;. The Damage Mechanism of UVA on Human Fibroblast and Keratinocyte and the Photoprotection Role of Resveratrol from UVA Induced Damage; Central South University, 2008.
  • Asikin, Y.; Takahashi, M.; Mizu, M.; Takara, K.; Oku, H.; Wada, K. DNA Damage Protection against Free Radicals of Two Antioxidant Neolignan Glucosides from Sugarcane Molasses. Journal of the Science of Food and Agriculture 2016, 96, 1209–1215.
  • Sevgi, K.; Tepe, B.; Sarikurkcu, C. Antioxidant and DNA Damage Protection Potentials of Selected Phenolic Acids. Food and Chemical Toxicology 2015, 77, 12–21.
  • Tepe, B.; Degerli, S.; Arslan, S.; Malatyali, E.; Sarikurkcu, C. Determination of Chemical Profile, Antioxidant, DNA Damage Protection and Antiamoebic Activities of Teucrium Polium and Stachys Iberica. Fitoterapia 2011, 82, 237–246.
  • Xin, C.; Nishida, H.; Konishi, T. Oxidant-Induced DNA Damage and the Reparation in NIH3T3 Mouse Fibroblasts by Single Cell Gel Electrophoresis. Journal of Xi’an Jiaotong University (Medical Sciences) 2007, 1, 006.
  • Deng, S.; Xu, K. Q. Research Progress of DNA Damage Detection Technologies. The Chemistry of Life 2013, 33, 700–705.
  • Jeong, J. B.; Seo, E. W.; Jeong, H. J. Effect of Extracts from Pine Needle against Oxidative DNA Damage and Apoptosis Induced by Hydroxyl Radical via Antioxidant Activity. Food and Chemical Toxicology 2009, 47, 2135–2141.
  • Chatsumpun, M.; Chuanasa, T.; Sritularak, B.; Likhitwitayawuid, K. Oxyresveratrol Protects against DNA Damage Induced by Photosensitized Riboflavin. Natural Product Communications 2011, 6, 41–44.
  • Hu, S.; Chen, F.; Wang, M. Photoprotective Effects of Oxyresveratrol and Kuwanon O on DNA Damage Induced by UVA in Human Epidermal Keratinocytes. Chemical Research in Toxicology 2015, 28, 541–548.
  • Yen, G.-C.; Duh, P.-D.; Lin, C.-W. Effects of Resveratrol and 4-Hexylresorcinol on Hydrogen Peroxide-Induced Oxidative DNA Damage in Human Lymphocytes. Free Radical Research 2003, 37, 509–514.
  • Burkhardt, S.; Reiter, R. J.; Tan, D.-X.; Hardeland, R.; Cabrera, J.; Karbownik, M. DNA Oxidatively Damaged by Chromium (III) and H 2 O 2 Is Protected by the Antioxidants Melatonin, N 1-Acetyl-N 2-Formyl-5-Methoxykynuramine, Resveratrol and Uric Acid. The International Journal of Biochemistry & Cell Biology 2001, 33, 775–783.
  • López‐Burillo, S.; Tan, D. X.; Mayo, J. C.; Sainz, R. M.; Manchester, L. C.; Reiter, R. J. Melatonin, Xanthurenic Acid, Resveratrol, EGCG, Vitamin C and α‐lipoic Acid Differentially Reduce Oxidative DNA Damage Induced by Fenton Reagents: A Study of Their Individual and Synergistic Actions. Journal of Pineal Research 2003, 34, 269–277.
  • Duthie, S.; Collins, A.; Duthie, G.; Dobson, V. Quercetin and Myricetin Protect against Hydrogen Peroxide-Induced DNA Damage (Strand Breaks and Oxidised Pyrimidines) in Human Lymphocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 1997, 393, 223–231.
  • Aherne, S.; O’Brien, N. Protection by the Flavonoids Myricetin, Quercetin, and Rutin against Hydrogen Peroxide-Induced DNA Damage in Caco-2 and Hep G2 Cells. Nutrition and Cancer 1999, 34, 160–166.
  • Zhou, D. F.; Ke, W. Z.; Ji, K. Protective Effect of Vitamin C on Ultraviolet Radiation-Induced DNA Damage. Acta Optica Sinica 2005, 25, 643–646.
  • Horvathova, E.; Navarova, J.; Galova, E.; Sevcovicova, A.; Chodakova, L.; Snahnicanova, Z.; Melusova, M.; Kozics, K.; Slamenova, D. Assessment of Antioxidative, Chelating, and DNA Protective Effects of Selected Essential Oil Components (Eugenol, Carvacrol, Thymol, Borneol, Eucalyptol) of Plants and Intact Rosmarinus Officinalis Oil. Journal of Agricultural and Food Chemistry 2014, 62, 6632–6639.
  • Liu, H. X.; Zhou, L.; Ding, Z. H. UV Radiation-Induced DNA Damage in Keratinocytes and the Protective Effect of Resveratrol. The. Journal of Practical Medicin 2015, 31, 3822–3825.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.