962
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Nutritional profiles, phenolics, and DNA damage protective effect of Lycopus lucidus Turcz. root at different harvest times

, , , , &
Pages S3062-S3077 | Received 01 Jul 2017, Accepted 03 Nov 2017, Published online: 10 Jan 2018

References

  • Murata, T.; Watahiki, M.; Tanaka, Y.; Miyase, T.; Yoshizaki, F. Hyaluronidase Inhibitors from Takuran, Lycopus Lucidus. Chem. Pharm. Bull. 2010, 58, 394–397. doi:10.1248/cpb.58.394.
  • The State Commission of Chinese Pharmacopoeia. Pharmacopoeia of People’s Republic of China, Part Ӏ; China Medical Science Press: Beijing, 2015; 228.
  • Woo, E. R.; Piao, M. S. Antioxidative Constituents from Lycopus Lucidus. Arch. Pharm. Res. 2004, 27, 173–176. doi:10.1007/BF02980102.
  • Ślusarczyk, S.; Hajnos, M.; Skalicka-Woźniak, K.; Matkowski, A. Antioxidant Activity of Polyphenols from Lycopus Lucidus Turcz. Food Chem. 2009, 113, 134–138. doi:10.1016/j.foodchem.2008.07.037.
  • Yu, J. Q.; Lei, J. C.; Zhang, X. Q.; Yu, H. D.; Tian, D. Z.; Liao, Z. X.; Zou, G. L. Anticancer, Antioxidant and Antimicrobial Activities of the Essential Oil of Lycopus Lucidus Turcz. Var. Hirtus Regel. Food Chem. 2011, 126, 1593–1598. doi:10.1016/j.foodchem.2010.12.027.
  • Lu, Y. H.; Huang, J. H.; Li, Y. C.; Ma, T. T.; Sang, P.; Wang, W. J.; Gao, C. Y. Variation in Nutritional Compositions, Antioxidant Activity and Microstructure of Lycopus Lucidus Turcz. Root at Different Harvest Times. Food Chem. 2015, 183, 91–100. doi:10.1016/j.foodchem.2015.03.033.
  • Lee, Y. J.; Kang, D. G.; Kim, J. S.; Lee, H. S. Lycopus Lucidus Inhibits High Glucose-Induced Vascular Inflammation in Human Umbilical Vein Endothelial Cells. Vascul. Pharmacol. 2008, 48, 38–46. doi:10.1016/j.vph.2007.11.004.
  • Xiong, W.; Chen, G. Y.; Tan, D. Y.; Zuo, S. Y. Hypoglycemic and Hypolipidemic Effect of Polysaccharide from Wild Plant Lycopus Lucidus Turcz. On Alloxan-Induced Diabetic Mice. Chinese. J. Bioprocess Eng. 2011, 9, 45–48.
  • Yang, X. B.;. Lv Y. L.; Tian, L. M.; Zhao, Y. Composition and Systemic Immune Activity of the Polysaccharides from an Herbal Tea (Lycopus Lucidus Turcz). J. Agric. Food Chem. 2010, 58, 6075–6080. doi:10.1021/jf101061y.
  • Yang, X. B.; Zhao, Y.; He, N. W. Isolation, Characterization, and Immunological Effects of α-galacto-oligosaccharides from a New Source, the Herb Lycopus Lucidus Turcz. J. Agric. Food Chem. 2010, 58, 8253–8258. doi:10.1021/jf101217f.
  • Shin, T. Y.; Kim, S. H.; Suk, K.; Ha, J. H.; Kim, I. K.; Lee, M. G.; Jun, C. D.; Kim, S. Y.; Lim, J. P.; Eun, J. S.; Shin, H. Y.; Kim, H. M. Anti-Allergic Effects of Lycopus Lucidus, on Mast Cell-Mediated Allergy Model. Toxicol. Appl. Pharmacol. 2005, 209, 255–262. doi:10.1016/j.taap.2005.04.011.
  • Yang, J. Y.; Lee, H. S. Acaricidal Activities of the Active Component of Lycopus Lucidus Oil and Its Derivatives against House Dust and Stored Food Mites (Arachnida: Acari). Pest Manag. Sci. 2012, 68, 564–572. doi:10.1002/ps.2295.
  • Yao, Y.; Yang, J.; Wang, D.; Zhou, F.; Cai, X.; Lu, W.; Hu, C.; Gu, Z.; Qian, S.; Guan, X.; Cao, P. The Aqueous Extract of Lycopus Lucidus Turcz Ameliorates Streptozotocin-Induced Diabetic Renal Damage via Inhibiting TGF-β1 Signaling Pathway. Phytomedicine 2013, 20, 1160–1167. doi:10.1016/j.phymed.2013.06.004.
  • Malik, A.; Yuldashev, M. P. Flavonoids of Lycopus Lucidus. Chem. Nat. Compounds 2002, 38, 104–105. doi:10.1023/A:1015762605965.
  • Malik, A.; Yuldashev, M. P.; Obid, A.; Ismoil, T.; Ping, L. Y. Flavonoids of the Aerial Part of Lycopus Lucidus. Chem. Nat. Compounds 2002, 38, 612–613. doi:10.1023/A:1022667611501.
  • Liang, T.; Fu, Q.; Li, F.; Zhou, W.; Xin, H.; Wang, H.; Jin, Y.; Liang, X. Hydrophilic Interaction Liquid Chromatography for the Separation, Purification, and Quantification of Raffinose Family Oligosaccharides from Lycopus Lucidus Turcz. J. Sep. Sci. 2015, 38, 2607–2613. doi:10.1002/jssc.v38.15.
  • Lee, S. K.; Kader, A. A. Pre-Harvest and Post-Harvest Factors Influencing Vitamin C Content of Horticultural Crops. Postharvest Biol. Technol. 2000, 20, 207–220. doi:10.1016/S0925-5214(00)00133-2.
  • Ministry of Health, People’s Republic of China; Standardization Administration of China. Determination of Crude Fiber in Vegetable Foods. GB/T 5009.10-2003; Beijing: Standards press of China, 2003.
  • Yoon, Y.; Kuppusamy, S.; Cho, K. M.; Kim, P. J.; Kwack, Y.; Lee, Y. B. Influence of Cold Stress on Contents of Soluble Sugars, Vitamin C and Free Amino Acids Including Gamma-Aminobutyric Acid (GABA) in Spinach (Spinacia Oleracea). Food Chem. 2017, 215, 185–192. doi:10.1016/j.foodchem.2016.07.167.
  • Sarin, R.; Sharma, M.; Khan, A. A. Studies on Guizotia Abyssinica L. Oil, Biodiesel Synthesis and Process Optimization. Bioresour. Technol. 2009, 100, 4187–4192. doi:10.1016/j.biortech.2009.03.072.
  • Ministry of Health, People’s Republic of China. National Food Safety Standard. Determination of Vitamin B1 in Foods for Infants and Young Children, Milk and Milk Products. GB 5413.11-2010; Beijing: Standards press of China, 2010.
  • Ministry of Health, People’s Republic of China. National Food Safety Standard. Determination of Vitamin B2 in Foods for Infants and Young Children, Milk and Milk Products. GB 5413.12-2010; Beijing: Standards press of China, 2010.
  • Ministry of Health, People’s Republic of China. National Food Safety Standard. Determination of Vitamin B6 in Foods for Infants and Young Children, Milk and Milk Products. GB 5413.13-2010; Beijing: Standards press of China, 2010.
  • China Entry-Exit Inspection and Quarantine. Method for Determination of Vitamin C and Caffeine in Beverages of Export; SN/T, 0744–1999; Beijing: Standards press of China, 1999.
  • Santiago, R.; Reid, L. M.; Arnason, J. T.; Zhu, X. Y.; Martinez, N.; Malvar, R. A. Phenolics in Maize Genotypes Differing Insusceptibility to Gibberella Stalk Rot (Fusarium Graminearum Schwabe). J. Agric. Food Chem. 2007, 55, 5186–5193. doi:10.1021/jf070641e.
  • Zhang, S. C.; Yan, Y.; Wang, B. Q.; Liang, Z. S.; Liu, Y.; Liu, F. H.; Qi, Z. H. Selective Responses of Enzymes in the Two Parallel Pathways of Rosmarinic Acid Biosynthetic Pathway to Elicitors in Salvia Miltiorrhiza Hairy Root Cultures. J. Biosci. Bioeng. 2014, 117, 645–651. doi:10.1016/j.jbiosc.2013.10.013.
  • Chang, S. T.; Wu, J. H.; Wang, S. Y.; Kang, P. L.; Yang, N. S.; Shyur, L. F. Antioxidant Activity of Extracts from Acacia Confusa Bark and Heartwood. J. Agric. Food Chem. 2001, 49, 3420–3424. doi:10.1021/jf0100907.
  • Wang, B. M.; Chen, J. J.; Chen, L. S.; Wang, X. N.; Wang, R.; Ma, L.; Peng, S. F.; Luo, J.; Chen, Y. Z. Combined Drought and Heat Stress in Camellia Oleifera Cultivars: Leaf Characteristics, Soluble Sugar and Protein Contents, and Rubisco Gene Expression. Trees 2015, 29, 1483–1492. doi:10.1007/s00468-015-1229-9.
  • Karimi, M.; Ahmadi, A.; Hashemi, J.; Abbasi, A.; Tavarini, S.; Guglielminetti, L.; Angelini, L. G. The Effect of Soil Moisture Depletion on Stevia (Stevia Rebaudiana Bertoni) Grown in Greenhouse Conditions: Growth, Steviol Glycosides Content, Soluble Sugars and Total Antioxidant Capacity. Sci. Hortic. 2015, 183, 93–99. doi:10.1016/j.scienta.2014.11.001.
  • Hykkerud Steindal, A. L.; Rødven, R.; Hansen, E.; Mølmann, J. Effects of Photoperiod, Growth Temperature and Cold Acclimatization on Glucosinolates, Sugars and Fatty Acids in Kale. Food Chem. 2015, 174, 44–51. doi:10.1016/j.foodchem.2014.10.129.
  • Yu, L. N.; Liu, H. X.; Shao, X. F.; Yu, F.; Wei, Y. Z.; Ni, Z. M.; Xu, F.; Wang, H. F. Effects of Hot Air and Methyl Jasmonate Treatment on the Metabolism of Soluble Sugars in Peach Fruit during Cold Storage. Postharvest Biol. Technol. 2016, 113, 8–16. doi:10.1016/j.postharvbio.2015.10.013.
  • Yang, B. R. Sugars, Acids, Ethyl β-D-glucopyranose and a Methyl Inositol in Sea Buckthorn (Hippophaë Rhamnoides) Berries. Food Chem. 2009, 112, 89–97. doi:10.1016/j.foodchem.2008.05.042.
  • Gaydou, E. M.; Lozano, Y.; Ratovohery, J. Triglyceride and Fatty Acid Compositions in the Mesocarp of Persea Americana during Fruit Development. Phytochemistry 1987, 26, 1595–1597. doi:10.1016/S0031-9422(00)82251-7.
  • Ozdemir, F.; Topuz, A. Changes in Dry Matter, Oil Content and Fatty Acids Composition of Avocado during Harvesting Time and Post-Harvesting Ripening Period. Food Chem. 2004, 86, 79–83. doi:10.1016/j.foodchem.2003.08.012.
  • Steponkus, P. L. Role of the Plasma Membrane in Freezing Injury and Cold Acclimation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1984, 35, 543–584. doi:10.1146/annurev.pp.35.060184.002551.
  • Salas, J. J.; Sanchez, J.; Ramli, U. S.; Manaf, A. M.; Williams, M.; Harwood, J. L. Biochemistry of Lipid Metabolism in Olive and Other Oil Fruits. Prog. Lipid Res. 2000, 39, 151–180. doi:10.1016/S0163-7827(00)00003-5.
  • Ito, A.; Shimizu, H.; Hiroki, R.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Effect of Different Durations of Root Area Chilling on the Nutritional Quality of Spinach. Environ. Control Biol. 2014, 51, 187–191. doi:10.2525/ecb.51.187.
  • Steindal, A. L. H.; Mølmann, J.; Bengtsson, G. B.; Johansen, T. J. Influence of Day Length and Temperature on the Content of Health-Related Compounds in Broccoli (Brassica Oleracea L. Var. Italica). J. Agric. Food Chem. 2013, 61, 10779–10786. doi:10.1021/jf403466r.
  • Kang, N. S.; Lee, J. H. Characterisation of Phenolic Phytochemicals and Quality Changes Related to the Harvest Times from the Leaves of Korean Purple Perilla (Perilla Frutescens). Food Chem. 2011, 124, 556–562. doi:10.1016/j.foodchem.2010.06.071.
  • Song, C. Z.; Wang, Y. H.; Hua, Y.; Wu, Z. K.; Du, Z. Z. Chemical Constituents of Clematis Montana. Chin. J. Nat. Med. 2008, 6, 116–119. doi:10.3724/SP.J.1009.2008.00116.
  • Zhou, W. T.; Xie, H. H.; Xu, X. Y.; Liang, Y. G.; Wei, X. Y. Phenolic Constituents from Isodon Lophanthoides Var. Graciliflorus and Their Antioxidant and Antibacterial Activities. J. Funct. Foods 2014, 6, 492–498. doi:10.1016/j.jff.2013.11.015.
  • Forino, M.; Tartaglione, L.; Dell’Aversano, C.; Ciminiello, P. NMR-based Identification of the Phenolic Profile of Fruits of Lycium Barbarum (Goji Berries). Isolation and Structural Determination of a Novel N-Feruloyl Tyramine Dimer as the Most Abundant Antioxidant Polyphenol of Goji Berries. Food Chem. 2016, 194, 1254–1259. doi:10.1016/j.foodchem.2015.08.129.
  • Zhang, Z. Z.; Li, S. Y.; Li Ownby, S.; Wang, P.; Yuan, W.; Zhang, W. L.; Scott Beasley, R. Phenolic Compounds and Rare Polyhydroxylated Triterpenoid Saponins from Eryngium Yuccifolium. Phytochemistry 2008, 69, 2070–2080. doi:10.1016/j.phytochem.2008.03.020.
  • Morello, J. R.; Romero, M. P.; Ramo, T.; Motilva, M. J. Evaluation of L-Phenylalanine Ammonia-Lyase Activity and Phenolic Profile in Olive Drupe (Olea Europaea L.) From Fruit Setting Period to Harvesting Time. Plant Sci. 2005, 168, 65–72. doi:10.1016/j.plantsci.2004.07.013.
  • Petersen, M.; Abdullah, Y.; Benner, J.; Eberle, D.; Gehlen, K.; Hücherig, S.; Janiak, V.; Kim, K. H.; Sander, M.; Weitzel, C.; Wolters, S. Evolution of Rosmarinic Acid Biosynthesis. Phytochemistry 2009, 70, 1663–1679. doi:10.1016/j.phytochem.2009.05.010.
  • Hudec, J.; Kochanová, R.; Burdová, M.; Kobida, L.; Kogan, G.; Turianica, I.; Chlebo, P.; Hanáčková, E.; Slamka, P. Regulation of the Phenolic Profile of Berries Can Increase Their Antioxidant Activity. J. Agric. Food Chem. 2009, 57, 2022–2029. doi:10.1021/jf803185g.
  • Yan, Q.; Shi, M.; Ng, J.; Wu, J. Y. Elicitor-Induced Rosmarinic Acid Accumulation and Secondary Metabolism Enzyme Activities in Salvia Miltiorrhiza Hairy Roots. Plant Sci. 2006, 170, 853–858. doi:10.1016/j.plantsci.2005.12.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.