3,912
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Bioactive compounds of 44 traditional and exotic Brazilian fruit pulps: phenolic compounds and antioxidant activity

, , , , , & show all
Pages 106-118 | Received 19 Jul 2017, Accepted 22 Nov 2017, Published online: 19 Apr 2018

References

  • Schiassi, M. C. E. V.; Souza, V. R.; Lago, A. M. T.; Campos, L. G.; Queiroz, F. Fruits from the Brazilian Cerrado Region: Physico-Chemical Characterization, Bioactive Compounds, Antioxidant Activities, and Sensory Evaluation. Food Chemistry 2018, 245, 305–311. DOI: 10.1016/j.foodchem.2017.10.104.
  • Siriamornpun, S.; Kaewseejan, N. Quality, Bioactive Compounds and Antioxidant Capacity of Selected Climacteric Fruits with Relation to Their Maturity. Scientia Horticulturae 2017, 221, 33–42. DOI: 10.1016/j.scienta.2017.04.020.
  • Dutra, R. L. T.; Dantas, A. M.; Marques, D. A.; Batista, J. D. F.; Meireles, B. R. L. A.; Cordeiro, A. M. T. M.; Magnani, M.; Borges, G. S. C. Bioaccessibility and Antioxidant Activity of Phenolic Compounds in Frozen Pulps of Brazilian Exotic Fruits Exposed to Simulated Gastrointestinal Conditions. Food Research International 2017, 100, 650–657. DOI: 10.1016/j.foodres.2017.07.047.
  • Hanamura, T.; Uchida, E.; Aoki, H. Changes of the Composition in Acerola (Malpighia Emarginata DC.) Fruit in Relation to Cultivar, Growing Region and Maturity. Journal of the Science of Food and Agriculture 2008, 88, 1813–1820. DOI: 10.1002/jsfa.v88:10.
  • Cho, N.; Choi, J. H.; Yang, H.; Jeong, E. J.; Lee, K. Y.; Kim, Y. C.; Sung, S. H. Neuroprotective and Anti-Inflammatory Effects of Flavonoids Isolated from Rhus Verniciflua in Neuronal HT22 and Microglial BV2 Cell Lines. Food and Chemical Toxicology 2012, 50, 1940–1945. DOI: 10.1016/j.fct.2012.03.052.
  • Lin, S.-T.; Tu, S.-H.; Yang, P.-S.; Hsu, S.-P.; Lee, W.-H.; Ho, C.-T.; Wu, C.-H.; Lai, Y.-H.; Chen, M.-Y.; Chen, L.-C. Apple Polyphenol Phloretin Inhibits Colorectal Cancer Cell Growth through Inhibition of Type 2 Glucose Transporter and Activation of P53-Mediated Signaling Proteins. Journal of Agricultural and Food Chemistry 2016, 64, 6826–6837. DOI: 10.1021/acs.jafc.6b02861.
  • Saleem, F.; Sarkar, D.; Ankolekar, C.; Shetty, K. Phenolic Bioactives and Associated Antioxidant and Anti-Hyperglycemic Functions of Select Species of Apiaceae Family Targeting for Type 2 Diabetes Relevant Nutraceuticals. Industrial Crops and Products 2017, 107, 518–525. DOI: 10.1016/j.indcrop.2017.06.023.
  • Delfanian, M.; Kenari, R. E.; Sahari, M. A. Influence of Extraction Techniques on Antioxidant Properties and Bioactive Compounds of Loquat Fruit (Eriobotrya Japonica Lindl.) Skin and Pulp Extracts. Food Science & Nutrition 2015, 3, 179–187. DOI: 10.1002/fsn3.201.
  • Caleja, C.; Barros, L.; Antonio, A. L.; Oliveira, M. B. P. P.; Ferreira, I. C. F. R. A Comparative Study between Natural and Synthetic Antioxidants: Evaluation of Their Performance after Incorporation into Biscuits. Food Chemistry 2017, 216, 342–346. DOI: 10.1016/j.foodchem.2016.08.075.
  • Berto, A.; Ribeiro, A. B.; Souza, N. E.; Fernandes, E.; Chisté, R. C. Bioactive Compounds and Scavenging Capacity of Pulp, Peel and Seed Extracts of the Amazonian Fruit Quararibea Cordata against ROS and RNS. Food Research International 2015, 77, 236–243. DOI: 10.1016/j.foodres.2015.06.018.
  • Zielinski, A. A. F.; Ávila, S.;Ito, V.; Nogueira, A.; Wosiacki, G.; Haminiuk, C. W. I. The Association between Chromaticity, Phenolics, Carotenoids, and in Vitro Antioxidant Activity of Frozen Fruit Pulp in Brazil: An Application of Chemometrics. Journal of Food Science 2014, 79, 510–516. DOI: 10.1111/1750-3841.12389.
  • Meléndez, E.; Ortiz, M. C.; Sarabia, L. A.; Íniguez, M.; Puras, P. Modelling Phenolic and Technological Maturities of Grapes by Means of the Multivariate Relation between Organoleptic and Physicochemical Properties. Analytica Chimica Acta 2013, 761, 53–61. DOI: 10.1016/j.aca.2012.11.021.
  • Dorta, E.; González, M.; Lobo, M. G.; Sánchez-Moreno, C.; Ancos, B. Screening of Phenolic Compounds in By-Product Extracts from Mangoes (Mangifera Indica L.) By HPLC-ESI-QTOF-MS and Multivariate Analysis for Use as a Food Ingredient. Food Research International 2014, 57, 51–60. DOI: 10.1016/j.foodres.2014.01.012.
  • Qannari, E. M.; Wakeling, I.; Courcoux, P.; MacFie, H. J. H. Defining the Underlying Sensory Dimensions. Food Quality and Preference 2000, 11, 151–154. DOI: 10.1016/S0950-3293(99)00069-5.
  • Singleton, V. L.; Rossi, J. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture 1965, 16, 144–158.
  • Chang, C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. Journal of Food and Drug Analysis 2002, 10, 178–182.
  • Giusti, M. M.; Wrolstad, R. E. Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy. In Current Protocols in Food Analytical Chemistry, Wrolstad, R. E., Editor, John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001.
  • Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. Food Science and Technology 1995, 28, 25–30.
  • Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying and Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology and Medicine 1999, 26, 1231–1237. DOI: 10.1016/S0891-5849(98)00315-3.
  • Haminiuk, C.; Plata-Oviedo, M. S.; Mattos, G.; Carpes, S. T.; Branco, I. G. Extraction and Quantification of Phenolic Acids and Flavonols from Eugenia Pyriformis Using Different Solvents. Journal of Food Science and Technology 2014, 51, 2862–2866. DOI: 10.1007/s13197-012-0759-z.
  • Bouveresse, D.; Pinto, R. C.; Schimidtke, L. M.; Locquet, N.; Rutledge, D. N. Identification of Significant Factors by an Extension of ANOVA-PCA Based on Multi-Block Analysis. Chemometrics and Intelligent Laboratory Systems 2011, 106, 173–182. DOI: 10.1016/j.chemolab.2010.05.005.
  • Haminiuk, C. W. I.; Plata-Oviedo, M. S. V.; Guedes, A. R.; Stafussa, A. P.; Bona, E.; Carpes, S. T. Chemical, Antioxidant and Antibacterial Study of Brazilian Fruits. International Journal Food Science Technology 2011, 46, 1529–1537. DOI: 10.1111/j.1365-2621.2011.02653.x.
  • Chaicouski, A.; Silva, J. E.; Trindade, J. L. F.; Canteri, M. H. G. Determination of the Amount of Phenolic Compounds Present in Liquid and Dry Extracts of Yerba Mate (Ilex Paraguariensis). Brazilian Journal of Agro-industrial Products 2014, 16, 33–41.
  • Vasco, C.; Ruales, J.; Kamal-Eldin, A. Total Phenolic Compounds and Antioxidant Capacities of Major Fruits from Ecuador. Food Chemistry 2008, 111, 816–823. DOI: 10.1016/j.foodchem.2008.04.054.
  • Souza, V. R.; Pereira, P. A. P.; Queiroz, F.; Borges, S. V.; Carneiro, J. D. S. Determination of Bioactive Compounds, Antioxidant Activity and Chemical Composition of Cerrado Brazilian Fruits. Food Chemistry 2012, 134, 381–386. DOI: 10.1016/j.foodchem.2012.02.191.
  • Halliwell, B.; Aeschbach, R.; Loliger, J.; Aruoma, O. I. The Characterization on Antioxidants. Food and Chemical Toxicology 1995, 33, 601–617. DOI: 10.1016/0278-6915(95)00024-V.
  • Bursal, E.; Köksal, E.; Gülçin, I.; Bilsel, G.; Gören, A. C. Antioxidant Activity and Polyphenol Content of Cherry Stem (Cerasus Avium L.) Determined by LC– MS/MS. Food Research International 2013, 51, 66–74. DOI: 10.1016/j.foodres.2012.11.022.
  • Gonçalves, A. E. S. S.; Lajolo, F. M.; Genovese, M. I. Chemical Composition and Antioxidant/Antidiabetic Potential of Brazilian Native Fruits and Commercial Frozen Pulps. Journal of Agricultural and Food Chemistry 2010, 58, 4666–4674. DOI: 10.1021/jf903875u.
  • Prior, R. L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry 2005, 53, 4290–4302. DOI: 10.1021/jf0502698.
  • Marecek, V.; Mikyska, A.; Hampel, D.; Cejka, P.; Neuwirthová, J.; Malachová, A.; Cerkal, R. ABTS and DPPH Methods as a Tool for Studying Antioxidant Capacity of Spring Barley and Malt. Journal of Cereal Science 2017, 73, 40–45. DOI: 10.1016/j.jcs.2016.11.004.
  • Almeida, M. M. B.; Sousa, P. H. M.; Arriaga, A. M. C.; Prado, G. M.; Magalhães, C. E. C.; Maia, G. A.; Lemos, T. L. F. Bioactive Compounds and Antioxidant Activity of Fresh Exotic Fruits from Northeastern Brazil. Food Research International 2011, 44, 2155–2159. DOI: 10.1016/j.foodres.2011.03.051.
  • Lin, S. D.; Liu, E. H.; Mau, J. L. Effect of Different Brewing Methods on Antioxidant Properties of Steaming Green Tea. LWT- Food Science and Technology 2008, 41, 1616–1623. DOI: 10.1016/j.lwt.2007.10.009.
  • Lage, G. A.; Medeiros, F. S.; Furtado, W. L.; Takahashi, J. A.; Filho, J. D. S.; Pimenta, L. P. S. The First Report on Flavonoid Isolation from Annona Crassiflora Mart. Natural Product Research 2014, 28, 808–811. DOI: 10.1080/14786419.2014.885518.
  • Aron, P. M.; Kennedy, J. A. Flavan-3-Ols: Nature, Occurrence and Biological Activity. Molecular Nutrition and Food Research 2008, 52, 79–104. DOI: 10.1002/mnfr.200700137.
  • Rimando, A.; Kalt, W.; Magee, J.; Dewey, J.; Ballington, J. Resveratrol, Pterostilbene, and Piceatannol in Vaccinium Berries. Journal of Agricultural and Food Chemistry 2004, 52, 4713–4719. DOI: 10.1021/jf040095e.
  • Malta, L. G.; Ghiraldini, F. G.; Reis, R.; Oliveira, M. V.; Silva, L. B.; Pastore, G. M. In Vivo Analysis of Antigenotoxic and Antimutagenic Properties of Two Brazilian Cerrado Fruits and the Identification of Phenolic Phytochemicals. Food Research International 2012, 49, 604–611. DOI: 10.1016/j.foodres.2012.07.055.
  • Barros, L.; Dueñas, M.; Ferreira, I. C. F. R.; Baptista, P.; Santos-Buelga, C. Phenolic Acids Determination by HPLC–DAD–ESI/MS in Sixteen Different Portuguese Wild Mushrooms Species. Food and Chemical Toxicology 2009, 47, 1076–1079. DOI: 10.1016/j.fct.2009.01.039.
  • Pacheco-Palencia, L. A.; Duncan, C. E.; Talcott, S. T. Phytochemical Composition and Thermal Stability of Two Commercial Açai Species, Euterpe Oleracea and Euterpe Precatória. Food Chemistry 2009, 115, 1199–1205. DOI: 10.1016/j.foodchem.2009.01.034.
  • Itoh, A.; Isoda, K.; Kondoh, M.; Kawase, M.; Watari, A.; Kobayashi, M. Hepatoprotective Effect of Syringic Acid and Vanillic Acid on CCl4-induced Liver Injury. Biological and Pharmaceutical Bulletin 2010, 33, 983–987. DOI: 10.1248/bpb.33.983.
  • Wang, H. Q.; Li, D. L.; Du, Z. Y.; Huang, M. T.; Cui, X. X.; Lu, Y. J.; Zhang, K. Antioxidant and Anti-Inflammatory Properties of Chinese Ilicifolius Vegetable (Acanthopanax Trifoliatus (L) Merr) and Its Reference Compounds. Food Science and Biotechnology 2015, 24, 1131–1138. DOI: 10.1007/s10068-015-0144-6.
  • Hao, Y.; Gao, R.; Liu, D.; He, G.; Tang, Y.; Guo, Z. Selective Extraction and Determination of Chlorogenic Acid in Fruit Juices Using Hydrophilic Magnetic Imprinted Nanoparticles. Food Chemistry 2016, 200, 215–222. DOI: 10.1016/j.foodchem.2016.01.004.
  • Pingret, D.; Fabiano-Tixier, A.-S.; Le Bourvellec, C.; Renard, C. M. G. C.; Chemat, F. Lab and Pilot-Scale Ultrasound-Assisted Water Extraction of Polyphenols from Apple Pomace. Journal of Food Engineering 2012, 111, 73–81. DOI: 10.1016/j.jfoodeng.2012.01.026.
  • Mazerolles, G.; Preys, S.; Bouchut, C.; Meudec, E.; Fulcrand, H.; Souquet, J. M.; Cheynier, V. Combination of Several Mass Spectrometry Ionization Modes : A Multiblock Analysis for A Rapid Characterization of the Red Wine Polyphenolic Composition. Analytica Chimica Acta 2010, 678, 195–202. DOI: 10.1016/j.aca.2010.07.034.
  • Mezadri, T.; Pérez-Gálvez, A.; Hornero-Méndez, D. Carotenoid Pigments in Acerola Fruits (Malpighia Emarginata DC.) And Derived Products. European Food Research and Technology 2005, 220, 63–69. DOI: 10.1007/s00217-004-1042-y.
  • Rufino, M. S.; Alves, R. E.; Brito, E. S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive Compounds and Antioxidant Capacities of 18 Nontraditional Tropical Fruits from Brazil. Food Chemistry 2010, 121, 996–1002. DOI: 10.1016/j.foodchem.2010.01.037.
  • Jullian, C.; Miranda, S.; Zapata-Torres, G.; Mendizábal, F.; Oleoa-Azar, C. Studies of Inclusion Complexes of Natural and Modified Cyclodextrin with (+) Catequin by NMR and Molecular Modeling. Bioorganic & Medicinal Chemistry 2007, 15, 3217–3224. DOI: 10.1016/j.bmc.2007.02.035.